конечно, встречаются, но намного реже, чем вокруг одиночных звезд.

Каким образом звезда-компаньон препятствует возникновению планеты? Протопланетный диск, формирующийся вокруг молодой звезды в двойной системе, подвергается действию силы притяжения звезды-компаньона. В результате диск деформируется, вытягиваясь в сторону второй звезды в виде выступа. Так как скорость вращения диска выше скорости движения по двойной орбите, выступ обгоняет звезду-компаньона. Гравитация компаньона тянет его назад, создавая сопротивление, под действием которого диск замедляется. Как и при планетной миграции, из-за падения скорости газ и пыль устремляются к центру, и диск сжимается. В результате происходит приливное усечение диска звездой-компаньоном. Аналогичный эффект торможения имеет место на Земле из-за вызванных Луной приливных выступов. В результате вращение Земли слегка замедляется. Чтобы учесть это замедление, время от времени в наш календарь приходится добавлять дополнительную секунду.

Из-за усечения протопланетного диска времени на формирование планет остается все меньше и меньше. Чем компактнее диск, тем ближе он к испепеляющему жару звезды и тем быстрее происходит его аккреция. Этим объясняется то обстоятельство, что протопланетные диски вокруг двойных звезд видны в течение более короткого времени, чем диски вокруг одиночных звезд. Близость второй звезды также приводит к повышению температуры диска, затрудняя конденсацию пыли и тем самым уменьшая количество материала для строительства планет.

В тех протопланетных дисках, которым все-таки удается выжить, звезда-компаньон может оказывать губительное воздействие на планетезимали. При обращении звезд в двойной системе по взаимным орбитам вторая звезда может притягивать формирующиеся планетезимали, заставляя их переходить на эллиптические траектории и, подобно гироскопу, совершать прецессионное движение вокруг своей звезды. Из-за изогнутых траекторий скорость столкновений существенно вырастает, что приводит не столько к слипанию, сколько к фрагментации частиц. Таким образом, темпы роста планетезималей и формирования зародышей планет снижаются.

Обилие негативных факторов заставляло задуматься о самой возможности существования планет рядом со звездой γ Цефея. Более всего исследователей беспокоил вопрос о наличии в усеченном диске достаточного количества газа для формирования юпитероподобной планеты-гиганта. Если его там было недостаточно, то, скорее всего, при наблюдении была допущена ошибка. Впрочем, как показывали расчеты, после усечения в диске должно было быть ровно столько вещества, сколько требуется для формирования планеты. На второго газового гиганта его бы вряд ли хватило.

Тот факт, что планета рядом с γ Цефея является газовым гигантом, также может объяснить, почему протопланетный диск рассеялся так быстро. Если диск был достаточно массивным, планета могла образоваться в результате возникшей в нем неустойчивости, избежав проблем, связанных с разрушительными столкновениями на высоких скоростях. В двойной системе неустойчивость развивается даже чаще, так как вероятность фрагментации в более массивном и плотном диске выше, а значит, под действием притяжения звезды-компаньона могут появиться условия для возникновения неустойчивости.

Однако стоит только исследователям выработать убедительную теорию формирования планет у двойных звезд, как появляется какая-нибудь новая планета, которая не укладывается в нее, и все приходится начинать сначала. В данном случае такой планетой стал объект с замысловатым названием OGLE-2013-BLG-0341L B b.

Планета, которая заставляет свет отклоняться

Планета OGLE-2013-BLG-0341L B b примечательна не только своим названием, которое длиннее, чем у любого другого объекта, встретившегося нам на страницах этой книги, но также и тем, что найдена она была с помощью абсолютно иного метода. Главную роль в обнаружении этой планеты сыграли не колебания скорости звезды или падение ее яркости, а гравитационное отклонение света.

Мало кто из нас задумывается о воздействии гравитации на свет. Эйнштейн был убежден, что лучи должны следовать кривизне пространства, создаваемой массивными объектами[21]. В качестве аналогии можно привести траекторию движения теннисного мячика, который быстро катится по пластине, продавленной мячом для боулинга, огибая тяжелый объект. Свет ведет себя точно так же. Впервые эту теорию удалось проверить во время полного солнечного затмения в 1919 г. Тогда британскому физику Артуру Эддингтону пришла в голову интересная мысль: он решил использовать короткий период, когда Луна перекрывает солнечный свет, чтобы проверить, отклоняется ли свет от других звезд под действием солнечной гравитации. Если свет от звезд отклоняется, тогда во время солнечного затмения звезды должны быть видны немного не там, где они находятся в ночное время, когда Солнца на небе нет.

Из проведенных Эддингтоном измерений следовало, что свет отклоняется на 0,00045 градуса, что соответствовало гипотезе Эйнштейна. После сообщения Эддингтона теория Эйнштейна оказалась в центре всеобщего внимания. Несмотря на возбуждение публики, сам Эйнштейн отнесся к всплеску внимания с равнодушием. Журналисту, который спросил, как бы он себя чувствовал, если бы наблюдения Эддингтона опровергли его теорию, Эйнштейн ответил: «Тогда мне не осталось бы ничего другого, как посочувствовать уважаемому господину Эддингтону. Теория в любом случае верна».

Отклонение света может свидетельствовать о присутствии невидимого массивного объекта, такого как тусклая звезда или планета. Основанный на этом наблюдении метод обнаружения объектов называют гравитационным микролинзированием, так как скрытый объект выступает в качестве линзы, вызывающей отклонение света. В обычных линзах (таких, например, как линзы в очках) свет по краям преломляется сильнее, чем в середине, что обеспечивает фокусировку лучей в одной точке. Гравитационные линзы создают противоположный эффект: чем ближе свет к центру, тем больше величина отклонения. В результате свет фокусируется в кольцо, а не в одну точку, образуя яркий кольцевидный ободок вокруг линзы, называемый кольцом Эйнштейна. Если в качестве линзы выступает объект с огромной массой, такой как целая галактика, то кольцо четко видно. В случае с объектами меньшего размера, такими как звезды, кольцо неразличимо. Единственный способ увидеть его — это наблюдать за другой, более далекой звездой, свет от которой будет становиться ярче, а затем тускнеть при ее прохождении за линзой, так как яркость кольца выше, чем этой звезды самой по себе.

Поскольку все, что имеет массу, заставляет свет отклоняться, планета, обращающаяся вокруг линзируемой звезды, также должна вносить свой вклад в это явление. Выступая в качестве дополнительной мини-линзы, она вызывает заметное изменение величины, на которую увеличивается и уменьшается яркость фонового источника. Как раз благодаря такому изменению и удалось обнаружить OGLE-2013-BLG-0341L B b.

Акроним OGLE, который можно называть одним из лучших в истории изучения Галактики, расшифровывается как «оптический эксперимент по гравитационному линзированию» (Optical Gravitational Lensing Experiment). Руководство проектом OGLE осуществляют специалисты из Варшавского университета в Польше, а большинство наблюдений проводятся в обсерватории Лас-Кампанас в Чили. Хотя основной задачей OGLE является изучение темной материи, в рамках проекта удалось обнаружить уже около 20 экзопланет. Планета OGLE-2013-BLG-0341L B b попала в поле зрения исследователей, когда они занимались поиском объектов в области звездного балджа — густо усеянной звездами центральной части нашей Галактики. Отсюда сокращение BLG в ее названии, которое указывает на то, что она

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату