устраняет нагрузки на подшипники. В этом случае подшипники могут быть простыми «сухосмазывающимися» втулками.
На некоторых спутниках связи уже несколько лет используют супермаховичные накопители энергии. Дело в том, что спутники связи, транслирующие на большие расстояния телефонные разговоры, телепрограммы и радиопередачи, работают обычно не только от солнечных батарей, но и от аккумуляторов энергии, которые дают ток, пока Земля загораживает спутник от Солнца и тот находится в тени. Однако время жизни электрохимических аккумуляторов невелико, они быстро выходят из строя, а из-за них прекращает существование и сам спутник, который мог бы служить еще долго. Вот и пал выбор на долговечные супермаховики. Они вращаются в магнитной подвеске со скоростью 40 тыс. оборотов в минуту. Плотность энергии супермаховиков для спутников связи примерно 0,1 МДж/кг.
В исследовательском центре США создана супермаховичная установка для международной космической станции, превосходящая по своим показателям ранее применявшиеся никель-водородные аккумуляторы. Супермаховик запасает большее количество энергии, а срок его службы вдвое дольше, чем у химических аккумуляторов.
Видимо, не обойтись без супермаховиков и на космических станциях, которые отправятся к далеким планетам, где почти нет солнечного света, дающего энергию для питания электронного оборудования станций. По мнению ученых, кратковременных включений пиропатронов будет вполне достаточно, чтобы с помощью газовой турбины так разогнать супермаховик, что его энергии надолго хватит для бесперебойной работы всех приборов.
В космосе супермаховики необходимы и для более прозаических дел – например, для ремонта станций, приведения в движение механизированного инструмента.
Допустим, космонавту нужно просверлить отверстие или завернуть гайку. Если он применит обыкновенную дрель или гайковерт, то реактивный момент, действующий на корпус ручного инструмента, закрутит в первую очередь самого космонавта. На Земле такого не случается, так как этому противодействует сила тяжести и сила трения, а в условиях невесомости – это обычное явление.
Теперь проделаем следующий опыт. Возьмем самый простой детский волчок – юлу, укрепим на ее кончике сверло, разгоним юлу и уберем руку. На первый взгляд как будто ничего удивительного – юла стоит на сверле и сама сверлит подставку. А ведь ни с какой из обычных дрелей подобный опыт никогда не получится. Даже у электрической дрели корпус тотчас завертится в противоположную сторону и порвет все провода.
Дело в том, что маховики и супермаховики обладают свойством «безреактивности», то есть при вращении они не оказывают реактивного действия на корпус и другие части устройства. Маховик связан с корпусом только подшипниками, а они, свободно проворачиваясь, не передают вращательных усилий.
Изготовленная мною маховичная дрель успешно сверлила любые доски. При этом она прекрасно выдерживала вертикальное направление благодаря еще одному свойству маховика, о котором уже упоминалось, – способности сохранять устойчивое положение свободной оси в пространстве.
Чтобы проверить это свойство самому, лучше всего снять велосипедное колесо с вилки, взяться за концы оси и, держа колесо на вытянутых руках, попросить товарища раскрутить его. Если колесо раскручено как следует, никакие попытки свернуть ось в сторону ни к чему не приведут, даже несмотря на большие усилия. Колесо будет сопротивляться совсем как живое, стараясь вырваться из рук. Суть происходящего состоит в том, что ось вращающего маховика всякий раз стремится повернуться не туда, куда мы прилагаем усилие, а под прямым углом к этому направлению.
Существует много способов узнать, куда будет поворачиваться ось маховика, но все они трудны и рассчитаны на специалистов. Поэтому я придумал для себя способ попроще, который назвал «правилом колеса». Запомнить его ничего не стоит, достаточно иметь в кармане хотя бы одну монетку или колесико. Пустим монетку катиться по столу. Скоро она начнет падать набок, но что для нас особенно важно – она и сворачивать будет в ту же сторону. Теперь представим себе, что монетка – это вращающийся маховик. Допустим, мы пытаемся свернуть ось этого маховика в ту же сторону, куда падает монета. Направление поворота монеты позволит нам определить, куда на самом деле будет сворачивать ось маховика. Вот и все правило.
Если ничто не воздействует на ось маховика, то она безупречно сохраняет свое положение в пространстве. И это делает маховик незаменимым в навигационных приборах, которые сейчас устанавливают на всех кораблях, самолетах, ракетах. Называют такие приборы гироскопическими. Об этих интереснейших приборах много написано, и я не буду подробно останавливаться здесь на них. А вот об автомобиле, в котором был применен как раз гироскопический эффект вращающегося маховика, думаю, сказать надо. Построил этот «гирокар» в 1914 году русский инженер П. П. Шиловский. Гирокар демонстрировался в Лондоне, где вызвал огромный интерес. Еще бы, машина Шиловского имела всего два колеса, как велосипед, однако она сохраняла без каких-либо упоров устойчивое положение, даже если все пассажиры садились по одну сторону. «Держал» машину раскрученный маховик благодаря гироскопическому эффекту. В гирокаре использовался примитивный автомат с датчиком наклона в виде шарика в трубке и сервомотором, воздействующим на 300-килограммовый маховик.
Такие автомобили строились и позже. Возможно, что будущий махомобиль с супермаховичной «энергетической капсулой» спроектируют тоже двухколесным, чтобы использовать сразу оба замечательных свойства супермаховика – способность накапливать энергию и сохранять неизменное положение в пространстве.
«Капсула» разрастается
Помните, мы говорили, что ученые разрабатывают проекты гигантских накопителей энергии на основе сверхпроводящих катушек – четверть километра диаметром и 50—70 м высотой. И накапливать они должны десятки миллионов мегаджоулей энергии. Такие накопители нужны для аккумулирования энергии в период ночных недогрузок электростанций и для выделения ее при перегрузках в часы «пик». Наиболее чувствительны к недогрузкам и перегрузкам атомные электростанции, на долю которых с каждым годом приходится все больше и больше вырабатываемой электроэнергии.
А пригодны ли супермаховики для накопления столь огромных количеств энергии и что они будут представлять собой в этом случае?
Применение маховичных накопителей на электростанциях тесно связано с именем известного русского изобретателя-самоучки А. Г. Уфимцева, которого М. Горький назвал «поэтом техники». Изобретения Уфимцева были необычайно широкого диапазона – от керосиновых ламп до самолетов. Тщательно проанализировав различные способы накопления энергии для ветро-электростанций, в том числе «водородное» и тепловое аккумулирование, он пришел к выводу, что маховичный накопитель подходит для этих целей лучше других.
Первый маховичный аккумулятор был построен А. Г. Уфимцевым в 1920 году из паровозного буфера. Маховик имел массу всего 30 кг и вращался в вакуумной камере, из которой был откачан воздух до давления около 5 гПа (гектопаскаль), совершая 12 тыс. оборотов в минуту. Вывод мощности из камеры осуществлялся электрическим путем с помощью мотор-генератора.