электроэнергии. Такой же эффект можно получить и от стационарного накопителя, только его не надо было бы возить с собой, да и был бы он совершенно безопасным для людей, так как установили бы его в отдельной нише под землей.
Другое дело, если речь идет о транспортном средстве с автономным двигателем, например автобусе. Его, конечно, проводами с неподвижным накопителем не свяжешь – тут придется устанавливать накопитель прямо на машине. Наш опыт изготовления и испытаний автобуса с таким агрегатом на борту в специфических российских условиях описан в шуточном рассказе «Трудности производства».
Изготовляли и испытывали мы автобус и с гидрогазовым накопителем, о котором речь шла еще в начале книги. «Трудности производства» были почти теми же, даже еще «покруче». Сейчас смешно вспоминать, а тогда, когда я сидел на баллоне, в котором было 250 атм. давления, а между ногами у меня проходило два толстенных шланга с тем же давлением, мне было не до смеха. Ведь и баллон, и шланги были экспериментальные, готовые «рвануть» в любой момент. Потом мне рассказывали, что масло под таким давлением не только режет части тела как нож, но и мгновенно заполняет всю кровеносную систему!
Результаты испытаний маховичного и гидрогазового накопителей-рекуператоров на автобусе оказались практически одинаковыми – экономилось около половины топлива, втрое сокращалась токсичность выхлопа. Казалось бы, радоваться надо, но я постепенно стал понимать, что путь использования на автотранспорте рекуператоров – тупиковый. Не рекуператор со своим особым, дополнительным приводом, пригодным только для торможений и разгонов, нужен автомобилю, а «гибрид» – симбиоз супермаховика и автономной энергетической установки с супервариатором в качестве их общего, единого привода на все случаи жизни!
Каков КПД автомобиля?
Да простит меня читатель, если я задам ему детский вопрос: каков КПД у автомобильного двигателя? «Совсем профессор от жизни отстал», – скорее всего подумает он и ответит, что из учебника физики следует: КПД бензинового двигателя достигает примерно 25 %, а дизельного – приближается к 40 %.
А может, не будем верить печатному слову, а лучше убедимся в этом сами. Заправим бак топливом «по горлышко» и проедем по городу, разумеется, без происшествий и «пробок», 100 км. А затем дольем бак из мерного сосуда снова до прежнего уровня. Если ваш автомобиль весит около тонны и работает на бензине, то долить придется в среднем около 10 л; для автомобиля той же массы с дизельным двигателем потребуется примерно 7 л солярки. Так как научные расчеты производятся не в литрах, даже не в поллитрах, а в килограммах, то для бензина, с учетом его плотности, это составит 7 кг, а для солярки – чуть больше 5 кг. При сжигании эти килограммы топлива выделят (можете проверить по справочнику!) 323 и 250 МДж энергии, соответственно. А затратит ваш автомобиль при движении со скоростью 50—60 км/ч (и это еще хорошо для города!) в среднем 25 МДж, о чем мы уже говорили выше. Поделим эту полезную работу на затраченную энергию и получим КПД для бензинового двигателя 7-8 %, а для дизеля – 10 %. Вот вам теория – 25 и 40 %, а вот суровая правда жизни – 7,5 и 10 %! Конечно, кое-что теряется и в трансмиссии, но это крохи по сравнению с потерями в двигателе.
Так что ж, врут авторы учебников? Нет, не врут, но лукавят. Тот КПД, что в них указан, относится к одному единственному режиму работы, называемому оптимальным.
А как, собственно, в научных институтах получают этот расход топлива? Испытуемый двигатель (не будем уточнять: оснащенный дополнительными системами – вентилятором, компрессором, генератором и т. д. или нет) устанавливают на специальный стенд, где его нагружают сопротивлениями, попросту – тормозят. Изменяют подачу топлива, момент сопротивления, частоту вращения, ведут строгий учет расхода топлива. Зная момент сопротивления и частоту вращения, можно определить мощность, а умножая эту мощность на время, получить работу в киловатт-часах. Правильнее, конечно, было бы выразить ее в джоулях. Так вот – 1 кВт·ч равен 3,6 МДж. Теперь, зная расход топлива в килограммах, можем отнести его к произведенной двигателем работе и получить так называемый удельный расход топлива. Чем современнее двигатель, тем меньше удельный расход топлива при наибольшей мощности и тем больше его КПД. Вот откуда эти 25 и 40 %!
А какова мощность, расходуемая двигателем при движении автомобиля со средней скоростью 50— 60 км/ч? Оказывается, для оговоренной массы автомобиля она составляет около 4 кВт. Трудно в это поверить, но автомобиль с двигателем около 100 кВт тратит при этой скорости всего 4 % мощности. И какой КПД вы еще хотите получить при этом? Особенно с учетом привода от двигателя множества всяких дополнительных агрегатов.
Что же делать? Если попробовать ехать на нашем автомобиле при оптимальном режиме работы двигателя, то это составит около 180 км/ч, что не всегда нужно. Да и, честно говоря, при такой скорости почти все топливо уйдет на взбалтывание воздуха, или, по-научному, на аэродинамические потери.
Можно пойти по другому пути, поставив на наш автомобиль двигатель мощностью 5 кВт, то есть в 20 раз меньшей мощности. Тогда при скорости 60—70 км/ч наш автомобиль покажет рекордную экономичность, а двигатель – именно тот КПД, что указан в учебниках. Но, увы, такая скорость движения никого не устроит, не говоря уже о том, что разгоняться наш автомобиль будет медленнее товарного поезда.
Как же разрешить это противоречие, неужели никто об этом раньше не думал? Да нет же, думали. Уже чуть ли не полвека прошло с тех пор, как была предложена концепция так называемого «гибридного» силового агрегата. Предлагалось включать двигатель только при оптимальном режиме, чтобы запасать выработанную им «экономичную», а к тому же и «экологичную» энергию в накопителе, и выключать двигатель, когда он переполняется энергией (пусть отдохнет!), то есть использовать для движения автомобиля именно эту, самую дешевую и чистую энергию!
На заре автомобилизма и даже гораздо позже, в 50-е годы прошлого века, у нас в стране, когда дороги были не так загружены, эту энергию накапливали в самой массе автомобиля. Делалось это так: автомобиль разгоняли примерно до 80 км/ч почти на полной мощности двигателя, а следовательно, и при максимальном КПД. После этого двигатель выключали, а коробку передач ставили в нейтраль. На автомобилях тех лет делать это еще разрешалось. И автомобиль шел с неработающим двигателем и отключенной трансмиссией накатом чуть ли не целый километр, пока скорость не падала ниже 30 км/ч. Затем опять включалась трансмиссия, запускался двигатель и разгон повторялся. И так автомобиль ехал всю дорогу.
Такое движение по научному называется «регулярным импульсивным циклом». Благодаря этому циклу передовые водители-«стахановцы» тех лет экономили до 30 % топлива. При этом энергия двигателя, работающего почти в оптимальном режиме, накапливалась в массе самого автомобиля, как в аккумуляторе, и шла она на движение автомобиля накатом. Конечно же, никакой регулировки скорости движения такого автомобиля-накопителя произвести было невозможно. Его трансмиссия была отключена, разогнанный автомобиль был накопителем и потребителем собственной энергии. Как если бы поставить раскрученное колесо или маховик на ребро и дать ему возможность свободно катиться.
Конечно же, не это было моей целью. Автомобиль должен нести в себе накопленную кинетическую энергию, но при этом быть управляемым, причем лучше всего, чтобы скорость изменялась плавно и бесступенчато, а для этого нужен вариатор.