Таким образом, в физике появилась мера времени, определяющая темп эволюции всей Вселенной. Наша Галактика на несколько миллиардов лет младше Вселенной. Солнце и Земля еще моложе. Вселенная как целое старше галактик, звезд, планет, а также и самих атомных ядер и элементарных частиц, из которых состоят все ее тела и системы.
Бег времениСвойства времени, которые мы измеряем при помощи часов, называют количественными или, как еще говорят, метрическими свойствами. При помощи часов мы определяем длительность различных отрезков времени, сравниваем эти отрезки между собой. Секунды, часы, годы – это обозначения, в которых мы выражаем результаты наших измерений. Мы присваиваем временным промежуткам те или иные числа, соответствующие их длительности. Проще говоря, часы помогают измерять время, давать ему количественную меру. Теория относительности представляет собой теорию количественных свойств времени.
Однако у времени есть и другие свойства, называемые качественными. Необратимый бег времени – важнейшее из его качественных свойств. Время не стоит на месте, оно непрерывно течет из прошлого через настоящее в будущее. Прошлое никогда не возвращается. Нельзя отправить какие бы то ни было сигналы в прошлое, нельзя изменить его. Влиять можно лишь на будущее и в будущее отправлять сигналы.
Время делится на три части – прошлое, настоящее и будущее. И они никогда не совмещаются. Размышляя об этом, Готфрид Лейбниц заключил, что время есть порядок несовместимых возможностей.
Теория относительности объясняет нам, от чего зависит темп течения времени, его замедление. Но почему время, вообще, течет? Чем определяется его неуклонный курс – от прошлого к будущему? На эти вопросы теория относительности не отвечает.
У нас нет ответа. Мы даже не уверены, те ли вопросы мы задаем, правильно ли их ставим.
Почему течет река? Потому что вода обладает текучестью, и когда есть уклон, она всегда течет вниз. Но будет ли правильным задать такой же прямой вопрос о времени и рассчитывать получить на него ответ наподобие этого?
Когда речь идет о реке, вопрос о ее течении сводится к более общим понятиям и в определенном смысле простым. Ответ содержит такие представления, как вода, наклон, движение… А как быть со временем и его бегом? Неизвестно.
Если и существуют более общие понятия, которые могли бы помочь с объяснением бега времени, то, наверное, необходимо искать подсказки в каких-то определенных физических процессах. В процессах простых, и в то же время универсальных. Не исключено, что подходящие процессы уже известны ученым, а нет, так, быть может, пока неизвестны, но когда-нибудь будут обязательно открыты. К примеру, в мире элементарных частиц.
Возможен и совсем другой взгляд, согласно которому время и его бег являют собой (вместе с пространством) самое фундаментальное и самое элементарное, к чему должна сводиться вся физика и что, в свою очередь, уже не сводимо ни к чему отдельному в явлениях физического мира.
КвантыВторая великая физическая теория современности – квантовая теория. Вместе с теорией относительности (в совокупности с нею) она привносит свежий взгляд на свойства времени, в частности в микромире.
Классическая механика главенствует в макромире, теория относительности – в мегаспоре, а в микромире никак не обойтись без квантовой теории. Здесь ключевую роль играют квантовые явления. Настоящий синтез двух теорий, где наравне с квантовой теорией полноценно применялась бы теория относительности, остается пока делом будущего.
Однако несколько удивительных следствий такого союза известны уже сейчас. В первую очередь это гравитон – квант «взволнованного» пространства-времени, который сочетает в себе свойства элементарной частицы, несущейся со скоростью света, и легкой волны искривленности, бегущей по четырехмерному миру. Искривленность пространства-времени, даже очень слабая, обеспечивает его энергию и импульс. Квантовые эффекты создают частицы из искривленности пространства-времени, вызывают его «материализацию».
Здесь проливается свет на совсем новые связи в природе, глубинный смысл которых еще только предстоит выяснить.
Еще одним достижением на этом пути мы обязаны физику-теоретику Стивену Хокингу, который применил квантовые соображения к черной дыре. Путем теоретических расчетов он смог доказать, что черная дыра должна испускать разнообразные элементарные частицы и излучение, подобно нагретому телу. И в конце концов это излучение должно уничтожить черную дыру.
Данный эффект получил название квантового испарения черных дыр. И хотя он не наблюдался в природе, имеет значение сама принципиальная возможность сильного влияния квантовых закономерностей на поведение пространства-времени. Квантовое испарение уничтожает черную дыру и вместе с этим устраняет причину замедления времени в данной области пространства. Если черная дыра является преградой на пути потока времени, то квантовые эффекты способны устранить этот барьер и освободить временной поток.
Квантовые эффекты имеют ключевое значение при малых масштабах времени и пространства. Именно такие условия сложились в первые мгновения расширения Вселенной, когда ее возраст составлял необычайно малые доли секунды. В таких обстоятельствах квантовые эффекты должны были проявляться в полную силу. А это означает, что начало Вселенной было значительно квантовым. Течение времени в момент зарождения Вселенной, вероятно, не было непрерывным. Оно было прерывистым, квантовым. То есть существовали мельчайшие отрезки времени, в пределах каждого из которых нельзя выделить отдельные последовательные части. Каждый отрезок времени появляется сразу как целое, наподобие кванта света, излучаемого атомом. Внутри такого «кванта времени» не имеют смысла понятия «раньше» и «позже».
Нетрудно предположить, насколько сильно данная ситуация размывает границы, установленные в физическом мире теорией относительности. Квантовая неопределенность вносится в причинность событий, но вместе с тем и в их одновременность, в порядок следования во времени. Даже в истории одной и той же частицы исчезает определенность в том, какое событие было раньше, а какое – позже. Такая обязательная, казалось бы, черта временного потока, как порядок смены событий, теряется в квантовых явлениях микромира.
Но в конце концов сильное отличие времени микромира от нашего обычного времени не является неожиданностью. Ведь различия между микромиром и макромиром столь значительны. Невозможно рассматривать время вне зависимости от явлений, описываемых с помощью времени. В свойствах времени отражаются свойства этих явлений.
На сегодняшний день теория относительности достаточно убедительно продемонстрировала свои возможности в изучении времени. Квантовая теория тоже помогла существенно продвинуться в изучении этого вопроса. Но в отличие от теории относительности, выводы квантовой теории, затрагивающие свойства времени, имеют пока в большей степени ориентировочный качественный характер.
ЭнтропияНеобратимое движение времени от прошлого к будущему, его однонаправленность называется «стрела времени». В пространстве мы можем двигаться в разных направлениях: мы можем поехать из Москвы в Барселону, а потом вернуться. Но время всегда движется только в одном направлении. Почему это так, нам не известно. А что нам известно