be proved by adapting Euclid’s proof that there are infinitely many primes. In the former case we also used the fact that −1 is a square (mod p) for any prime p of the form . These results can also be deduced directly from Dirichlet’s more general theorem on primes in arithmetic progressions, which states that there are infinitely many prime numbers of the form , where n is an integer, as long as .

Are there infinitely many primes with final digit 9?

Again, by Dirichlet’s theorem, there are infinitely many prime numbers of the form —that is, primes with final digit 9.

We have now reached the end of our story. Number theory continues to be an exciting part of modern mathematics, with many startling new developments over recent years. However, there are many parts of the subject that we have been unable to explore within these pages, and we hope that you will wish to continue your interest in the subject by referring to the items in our list of further reading.

Further reading

The following texts, some classic and others much newer, provide useful introductions to the various areas of number theory introduced in this book.

George E. Andrews, Number Theory, new edn, Dover Publications, 2000.

David M. Burton, Elementary Number Theory, 7th edn, McGraw-Hill, 1980.

H. Davenport, The Higher Arithmetic, 8th edn, Cambridge University Press, 2008.

Underwood Dudley, Elementary Number Theory, 2nd edn, Dover Publications, 2008.

Emil Grosswald, Topics from the Theory of Numbers, 2nd edn, Birkhäuser, 1984.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edn (ed. D. R. Heath-Brown and J. H. Silverman), Oxford University Press, 2008.

Gareth A. Jones and J. Mary Jones, Elementary Number Theory, Springer, 1998.

Oystein Ore, Invitation to Number Theory, 2nd edn (revised and updated by John J. Watkins and Robin Wilson), Mathematical Association of America, 2017.

James J. Tattersall, Elementary Number Theory in Nine Chapters,  2nd edn, Cambridge University Press, 2005.

Martin H. Weissman, An Illustrated Theory of Numbers, American Mathematical Society, 2017.

More historical information can be found in:

Leonard Eugene Dickson, History of the Theory of Numbers, Vols. I, II, III, Dover Publications, 2005.

O. Ore, Number Theory and its History, Dover Publications, 1988.

John J. Watkins: Number Theory: A Historical Approach, Princeton University Press, 2014.

Popular books on the Riemann hypothesis, Fermat’s last theorem, and the twin prime conjecture are:

John Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Plume Books, 2004.

Marcus du Sautoy, The Music of the Primes: Why an Unsolved Problem in Mathematics Matters, Harper/Perennial, 2004.

Vicky Neale, Closing the Gap: The Quest to Understand Prime Numbers, Oxford University Press, 2017.

Karl Sabbagh, Dr Riemann’s Zeros, Atlantic Books, 2003.

Simon Singh, Fermat’s Last Theorem, Fourth Estate, 1998.

More advanced books on specific topics include:

Tom M. Apostol, Introduction to Analytic Number Theory, 5th printing, Springer, 1998.

H. M. Edwards, Riemann’s Zeta Function, Dover Publications, 2003.

Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016.

Paulo Ribenboim, The Little Book of Bigger Primes, 2nd edn, Springer, 2010.

Ian Stewart and David Tall, Algebraic Number Theory and Fermat’s Last Theorem, 3rd edn, A. K. Peters / CRC Press, 2001.

An English translation of Gauss’s classic book of 1801 is:

Carl Friedrich Gauss, Disquisitiones Arithmeticae (trans. Arthur A. Clarke), Yale University Press, 1965.

Index

A

Adleman, L. 110

algorithm 23

al-Khwarizmi 24

almost prime 113

alternating sum 34

Ancient Greeks 2, 10, 53

arithmetic progression 124–5

B

Bachet de Méziriac, C. 89, 93–4

Baker, A. 129

Baker–Heegner–Stark theorem 129

Bernoulli, J. 134

birds problem 81–2, 144

C

calendars 63–6, 142

canonical form 44

card shuffling 1, 101–2, 144

Carmichael, R. 99

Carmichael number 100

Carroll, Lewis 65

Casting out nines 34–7, 62

census-taker puzzle 17

Chen Jingrun 113, 115

Chinese Remainder Theorem 71

cicada 20–1

Clay Mathematics Institute 130, 144

clock arithmetic 58–9, 63

Cocks, C. 110

Cole, F. N. 48

combination 16, 21

common divisor 20

common multiple 19

complex numbers 127–8, 137

complex plane 137–40

composite number 10–11, 38, 117, 148

congruences 58ff

congruent (mod n) 59

convergence of series 133

Conway, J. 65

counting necklaces 100

counting numbers 2

cryptography 4, 110–11

cubes 8–9, 29–30, 146–7

D

de la Vallée Poussin, C. 121–2

decimal system 31

Descartes, R. 51

difference of squares 87–8

digital root 35–6

digital sum 33

Diophantine equation 79, 144

Diophantus 2, 79, 85, 89, 93

Dirichlet, L. 96, 124–5, 130

Dirichlet’s theorem 124–5, 149

Disquisitiones Arithmeticae 2, 43, 58, 128

distribution of primes 116–22, 149

divides 14–16

divisibility 31–4, 61–2, 145

division rule 22

divisor 9, 14–19

divisor tests 30

Dodgson, C. L. 65

Dyson, F. 141

E

eggs problem 1, 49, 143

Eratosthenes 38

Erdős, P. 121

Euclid 2–3, 9, 22, 41, 50, 54, 122–3, 150

Euclid’s algorithm 22–7, 111

Euclid’s Elements 2, 9, 54

Euler, J. A. 91

Euler, L. 2–3, 46–7, 51–3, 87, 89, 95, 97, 112, 134–7

Euler product 136

Euler’s phi-function 103–6

Euler’s theorem 106–8, 110–11, 144

even number 5, 126

exponential function 120

F

factor 9, 14

factorial number 117

factorization 42–4

factorizing large numbers 108–10

Faro shuffling 101

Fermat, P. 2–3, 12, 51–2, 86–7, 89, 93, 95, 97–8, 108–9, 142, 146

Fermat number 13, 51, 53

Fermat prime 51–3, 55–6, 143–4, 149

Fermat’s ‘last theorem’ 2, 4, 92–6, 147

Fermat’s ‘little theorem’ 97–103, 106–8, 144

Fermat’s method, 108–9

Fibonacci, L. 26, 81

Fibonacci number 26

four-square theorem 89, 91

fundamental theorem of arithmetic 43–4

G

Gauss, C. F. 2–3, 55, 58, 65, 103, 128, 130, 139, 143

Gaussian integers 128

Germain, S. 95

GIMPS 49

Girard, A. 87

Goldbach, C. 112

Goldbach’s conjecture 112–14, 148

Gowers, T. 115

greatest common divisor 19–27, 44–5

Green, B. 126

Green–Tao theorem 126

Gregorian calendar 64

H

Hadamard, J. 121

Hardy, G. H. 90

harmonic series 134

Heegner, K. 128

Helfgott, H. 113–14

highest common factor 20

Hilbert, D. 91, 126

Humpty Dumpty 108

I

infinitely many primes 2, 41, 136, 150

infinite series 132–134

integer 4–6

ISBN number 34

J

Jingrun Chen 113, 115

Jones, J. 56

K

Kummer, E. 96

L

Lagrange, J. 2, 89

Lagrange’s four-square theorem 89, 91

Lamé, G. 96

law of quadratic reciprocity 77

least common multiple 17–19, 22, 44–5

Legendre, A.-M. 2, 75, 86, 89, 95–6, 124, 146

Legendre symbol 75

Lehmer, D. H. 62

Leibniz, G. 98

linear congruences 66–72

Lincoln, A. 36–7

logarithm, 120

Lucas, E. 47–8, 62

Lucas–Lehmer test 62

M

Maynard, J. 116

Mersenne, M. 12, 47–8, 87

Mersenne number 47–8

Mersenne prime 12, 46–50, 62–3, 149

method of infinite descent 95

Mills, W. H. 56

Mills’ constant 56

modular arithmetic 59

modulo 59

Montgomery, H. 141

multiple 5, 14–19

N

natural logarithm 120

necklaces 100

negative integer 5

number theory 2

number 6

O

odd number 5

P

perfect cube 8

perfect number 9–10, 49–51, 147

perfect square 1, 6, 143

phi function 103–6

pirates puzzle 67, 70–1

Platt, D. 113

Polignac, A. de 114

polygon 1, 53–6, 143–4

Polymath project 115–6

polynomial 56–7

Pope Gregory XIII 64

positive integer 5

postage stamp 36, 49, 96

prime number 2, 10–13, 38ff, 148–50

prime number theorem 117–22

primes in arithmetic progression 122–6, 149

primitive triple 82–5, 146

proof by contradiction 41

public key cryptography 110–11

Pythagorean theorem 7, 82

Pythagorean triple 82, 143

Pythagoreans 2, 6, 27

Q

quadratic reciprocity 77

quadratic residue 74

quadratic sieve method 108

quotient 22

R

Ramanujan, S. 90

reduction ad absurdum 41

regular polygon 1, 53–6, 143–4

regular prime 96

remainder 22

Riemann, B. 131–2, 138–40

Riemann hypothesis 1, 130, 138–41, 144–5

Riemann-zeta function 139–40

Riese, Adam 36–7

right-angled triangle 1, 7–8, 82–5, 143, 146

Rivest, R. 110

RSA encryption 110–11, 144

S

Sato, D. 56

Selberg, A. 121–2

self-replicating number 71–2

Shamir, A. 110

shuffling cards 1, 101–2, 144

sieve of Eratosthenes 38–40, 113

sieve methods 38–40, 110, 113, 115

simultaneous congruences 69–72

square-free number 128

squares 1, 6–7, 27–9, 61, 72–8, 143, 145–6

Stark, H. 128

sum of primes 11, 148

sum of squares 11–12, 85–90, 146, 148–9

Sunzi 69–71, 143

T

Tao, T. 115–16, 126

Taylor, R. 96

twin primes 11, 114, 148

twin prime conjecture, 114–16, 148

U

unique factorization 43–4, 126–9

V

Vinogradov, I. M. 113

W

Wada, H. 56

Waring, E. 91

Waring’s problem 91–2, 147

Wiens, D. 56

Wiles, A. 4, 96

Z

Zagier, D. 117–18, 141

zeros of zeta function 130, 139–41

zeta function 134–41, 144

Zhang, Y. 115

Economics

A Very Short Introduction

Partha Dasgupta

Economics has the capacity to offer us deep insights into some of the most formidable problems of life, and offer solutions to them too. Combining a global approach with examples from everyday life, Partha Dasgupta describes the lives of two children who live very different lives in different parts of the

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату