Finished products are seldom put in a warehouse because the demand for goods is continuous, and the machines work fast or slow, as directed by Corcen, to meet the exact amount of demand. Thus, an instrument ordered by Hella might be made up largely of atoms that twenty-four hours earlier were in the salty water of the Pacific Ocean. The energy used to produce and deliver this instrument to Hella might have been a part of the atomic structure of the water gently coursing along the bottom of the Caribbean Sea only a day earlier. This is the dynamic pace that is possible in the twenty-first century when all routine matters are cybernated by the intelligence of Corcen.
The North American Cybernated Industrial Complex consists of an underground factory approximately ten miles in diameter. This entire complex is operated by a computer, with its associated memory banks and inputs. Recorded directions for the production of everything used by the inhabitants of the twenty-first-century world are instantly available. If Corcen changes the specifications for a product, it modifies a few million bits of information on one of the millions of input sources.
The drilling, cutting, and stamping of metals, as performed in the factories of the twentieth century, is obsolete. Many of the objects are formed by electromigration. Metallic or plastic particles are made to flow in electrodynamic forms and assume a final position in the shape that is desired.
The most remarkable thing about this industrial complex is that at the time Hella arrives, there are no human beings within the entire seventy-eight square mile production area. All machines have been engineered to last many decades without repair although they will probably be replaced by improvements in a far shorter time. In the rare event of a breakdown, duplicate mechanisms are automatically positioned, and the faulty ones are either repaired or cybernetically destroyed. Many of the machines are multi-purpose and can modify their own structure and function as required by the job to be done.
The computer that controls this industrial complex is almost equal to Corcen in its inherent capacity. It has developed an incredible intelligence and imagination in controlling the input and output of the factory. Its millions of sensory inputs are located in every area. It has an uncanny ability far beyond that of any human being to anticipate and correct trouble.
Hella recalls that it has been four years since the computer controlling the industrial complex called for human assistance. At that time it took the scientific team selected by Corcen a period of three hours to discover the exact nature of the malfunction that the computer had not been able to repair. It took about a half-day to make the repairs, and the intelligence of the computer gave itself full instructions on how to avoid this problem in the future.
Energy Resources
Perhaps one of the most sensitive measures of the level of a civilization is the amount of energy it uses. As scientific methods of thinking were evolved, the energy at man’s disposal increased at a geometric rate. The great quantum leap occurred with the harnessing of fusion power. The development of controlled fusion of atomic particles led to a steady production of enormous amounts of usable energy with no radioactive by-products. Although there were many ways to accomplish this, most of the power in the twenty-first century was based on the use of deuterium and tritium, heavy isotopes of hydrogen that are abundant in sea water. There is enough nuclear energy in the oceans to provide power for millions of years.
As Hella goes through the atomic energy center, she marvels at the quietness and freedom from vibration. Here are billions of amperes being created within a few feet of her without the slightest audible sound. She is surprised by the compactness. She somehow expected to see an enormous building housing the energy reactors. Deuterium and tritium which have been extracted from sea water are fed into the energy converter in a small pipe. The entire energy conversion mechanism, with a multi-million kilovolt power output is about the size of a hangar for a large airliner. No people are on duty—only Corcen and its associated computer.
The Research Center
Hella’s next stop is at the research center adjoining the industrial complex. For the first time since arriving at the industrial area Hella finds human activity. In place of the teleprojectors that conducted them through Corcen and the industrial and power areas, there is a ten-year-old boy who enjoys giving conducted tours through the research area. Teleprojected guides are available for these tours, but they have been switched off because of the interest of this youngster in performing this service for his own enjoyment and the benefit of the visitors.
“One of our biggest problems,” the young guide points out, “is to get our researchers to take sufficient rest. They get engrossed in a problem and sometimes continue for forty-eight hours without a break. Corcen reminds them to rest, but they make their own decisions.”
Upon arrival at the first lab, the guide informs the group, “One of the most interesting things we’re now working on is the electronic educator. Our understanding of the human brain has now reached the point where we know, in theory, various ways to place knowledge directly into the living brain of a human being by electronic means. When this is perfected, it will enable us to acquire instantaneously a skill that otherwise might take years of learning and practice. Our areas of extensive knowledge will no longer be limited to the information that is programmed into our supplementary brains in the embryonic stage.
“In the next lab they are doing research on language