Можно выдвинуть несколько возражений против привлечения сильного антропного принципа для объяснения наблюдаемого состояния Вселенной. Во-первых, в каком смысле можно говорить, что все эти вселенные существуют? Если они действительно изолированы друг от друга, то события, происходящие не в нашей Вселенной, не могут иметь наблюдаемых следствий в нашей Вселенной. Поэтому нам следует воспользоваться принципом экономии и исключить их из теории. Если же эти вселенные – просто разные области одной и той же вселенной, то научные законы должны быть одинаковы в каждой области, потому что иначе был бы невозможен непрерывный переход из одной области в другую. Тогда области отличались бы друг от друга только начальными конфигурациями и сильный антропный принцип сводился бы к слабой формулировке.

Второе возражение против сильного антропного принципа – это то, что он направлен против хода всей истории науки. Развитие науки шло от геоцентрических космологии Птолемея и его предшественников через гелиоцентрическую космологию Коперника и Галилея к современной картине мира, согласно которой Земля является планетой среднего размера, обращающейся вокруг обычной звезды внутри обычной спиральной галактики, которая в свою очередь является всего лишь одной из миллиона миллионов галактик в наблюдаемой части Вселенной. Тем не менее, согласно сильному антропному принципу, все это гигантское сооружение существует просто ради нас. В это очень трудно поверить. Наша Солнечная система безусловно является необходимым условием нашего существования; те же самые рассуждения можно распространить на всю нашу Галактику, чтобы учесть звезды раннего поколения, благодаря которым произошел синтез тяжелых элементов. Но, по-видимому, нет никакой необходимости в том, чтобы все эти другие галактики, да и вся Вселенная были такими однородными и одинаковыми в больших масштабах в любом направлении.

Можно было бы не беспокоиться насчет антропного принципа, особенно в его слабой формулировке, если бы удалось показать, что из разных начальных конфигураций Вселенной лишь некоторые могли развиться во Вселенную, как та, которую мы наблюдаем. Если это правильно, то Вселенная, возникшая из случайных начальных условий, должна содержать в себе гладкие и однородные области, пригодные для развития разумной жизни. Если же для того, чтобы получилось то, что мы видим вокруг, требовался чрезвычайно тщательный выбор начального состояния Вселенной, то вряд ли в ней оказалась бы хоть одна область, в которой могла зародиться жизнь. В горячей модели большого взрыва было слишком мало времени для передачи тепла из одной области в другую. Это значит, что для объяснения того факта, что температура микроволнового фона одинакова в любом направлении наблюдения, необходимо, чтобы в начальном состоянии Вселенной ее температура была везде в точности одинаковой. Кроме того, требовался и очень точный выбор начальной скорости расширения, потому что для избегания повторного сжатия скорость расширения должна оставаться достаточно близкой к критическому значению. Следовательно, выбор начального состояния Вселенной должен производиться очень тщательно, если горячая модель большого взрыва применима до самого момента начала отсчета времени. Почему начало Вселенной должно было быть именно таким, очень трудно объяснить иначе, как деянием Бога, которому захотелось создать таких живых существ, как мы.

Попытки построить модель Вселенной, в которой множество разных начальных конфигураций могло бы развиться во что-нибудь вроде нашей нынешней Вселенной, привели Алана Гута, ученого из Массачусетского технологического института, к предположению о том, что ранняя Вселенная пережила период очень быстрого расширения. Это расширение называют раздуванием, подразумевая, что какое-то время расширение Вселенной происходило со все возрастающей скоростью, а не с убывающей, как сейчас. Гут рассчитал, что радиус Вселенной увеличивался в миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) раз всего за крошечную долю секунды.

Гут высказал предположение, что Вселенная возникла в результате большого взрыва в очень горячем, но довольно хаотическом состоянии. Высокие температуры означают, что частицы во Вселенной должны были очень быстро двигаться и иметь большие энергии. Как уже говорилось, при таких высоких температурах сильные и слабые ядерные силы и электромагнитная сила должны были все объединиться в одну. По мере расширения Вселенной она охлаждалась и энергии частиц уменьшались. В конце концов должен был бы произойти так называемый фазовый переход и симметрия сил была бы нарушена: сильное взаимодействие начало бы отличаться от слабого и электромагнитного. Известный пример фазового перехода – замерзание воды при охлаждении. Жидкое состояние воды симметрично, т. е. вода одинакова во всех точках и во всех направлениях. Образующиеся же кристаллы льда имеют определенные положения и выстраиваются в некотором направлении. В результате симметрия воды нарушается.

Если охлаждать воду очень осторожно, то ее можно «переохладить», т. е. охладить ниже точки замерзания (0 град. Цельсия) без образования льда. Гут предположил, что Вселенная могла себя вести похожим образом: ее температура могла упасть ниже критического значения без нарушения симметрии сил. Если бы это произошло, то Вселенная оказалась бы в нестабильном состоянии с энергией, превышающей тy, которую она имела бы при нарушении симметрии. Можно показать, что эта особая дополнительная энергия производит антигравитационное действие аналогично космологической постоянной, которую Эйнштейн ввел в общую теорию относительности, пытаясь построить статическую модель Вселенной. Поскольку, как и в горячей модели большого взрыва, Вселенная уже вращалась, отталкивание, вносимое космологической постоянной, заставило бы Вселенную расширяться со все возрастающей скоростью. Даже в тех областях, где число частиц вещества превышало среднее значение, гравитационное притяжение материи было бы меньше отталкивания, вносимого эффективной космологической постоянной. Следовательно, такие области должны были тоже расширяться с ускорением, характерным для модели раздувающейся Вселенной. По мере расширения частицы материи расходились бы все дальше друг от друга, и в конце концов расширяющаяся Вселенная оказалась бы почти без частиц, но все еще в переохлажденном состоянии. В результате расширения все неоднородности во Вселенной должны были просто сгладиться, как разглаживаются при надувании морщины на резиновом шарике. Следовательно, нынешнее гладкое и однородное состояние Вселенной могло развиться из большого числа разных неоднородных начальных состояний.

Во Вселенной, скорость расширения которой растет из-за космологической постоянной быстрее, чем замедляется из-за гравитационного притяжения материи, свету хватило бы времени для перехода из одной области ранней Вселенной в другую. Это было бы решением ранее поставленной задачи о том, почему разные области ранней Вселенной имеют одинаковые свойства. Кроме того, скорость расширения Вселенной стала бы автоматически очень близка к критическому значению, определяемому плотностью энергии во Вселенной. Тогда такую близость скорости расширения к критической можно было бы объяснить, не делая предположения о тщательном выборе начальной скорости расширения Вселенной.

Раздуванием Вселенной можно было бы объяснить, почему в ней так много вещества. В доступной наблюдениям области Вселенной содержится порядка ста миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов (единица с восьмьюдесятью нулями) частиц. Откуда все они взялись? Ответ состоит в том, что в квантовой теории частицы могут рождаться из энергии в виде пар частица-античастица. Но тогда сразу возникает вопрос: откуда берется энергия? Ответ таков. Полная энергия Вселенной в точности равна нулю. Вещество во Вселенной образовано из положительной энергии. Но все вещество само себя притягивает под действием гравитации. Два близко расположенных куска вещества обладают меньшей энергией, чем те же два куска, находящиеся далеко друг от друга, потому что для разнесения их в стороны нужно затратить энергию на преодоление гравитационной силы, стремящейся их соединить. Следовательно, энергия гравитационного ноля в каком-то смысле отрицательна. Можно показать, что в случае Вселенной, примерно однородной в пространстве, эта отрицательная гравитационная энергия в точности компенсирует положительную энергию, связанную с веществом. Поэтому полная энергия Вселенной равна нулю.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату