наиважнейшей. Во-вторых, много времени и сил отнимала педагогическая деятельность. В-третьих, требовалось накопить достаточное количество материалов. И хотя папки с надписями «Арифметика», «Геометрия», «Алгебра», «Астрономия» уже давно были заведены и непрерывно пополнялись выписками и набросками, время для новой книги серии еще не приспело. Главная трудность, смущавшая Перельмана, заключалась в том, как и в какой мере использовать математический аппарат и числовые примеры, обойтись без которых было совершенно невозможно.
Здесь Якова Исидоровича подстерегали своеобразные Сцилла и Харибда: в сочинениях популярного характера математические выкладки неизбежны, однако чрезмерное увлечение ими грозит превратить общедоступное произведение в ученый трактат. Перельману хорошо запомнились предостережения на сей счет, высказанные крупнейшими учеными. «Лекции, которые действительно научают, - писал Майкл Фарадей, - никогда не будут популярными, лекции, которые популярны, никогда не будут научать». Или: «Тяжкий жребий писать в наши дни математические книги, - утверждал Иоганн Кеплер. - Если не соблюдать надлежащей строгости в формулировках теорем, пояснениях, доказательствах и следствиях, то книгу нельзя считать математической. Если же неукоснительно соблюдать все требования строгости, то чтение книги становится весьма затруднительным».
Как обойти это, казалось, непреодолимое препятствие? Перельман решил: надо соединить обе полярности, то есть попытаться писать так, чтобы нисколько не пострадала научная безукоризненность, и при этом отлить изложение в форму занимательного повествования, превратив «опасный» математический аппарат в союзника и естественное подспорье. Иными словами, он задался труднейшей целью соединить строгость научного мышления с образностью и наглядностью изложения.
И эту задачу Перельман решил блестяще!
Еще обучаясь в Белостокском реальном училище, он услышал от учителя Бунимовича изречение Блэза Паскаля: «Предмет математики настолько серьезен, что не следует упускать случая делать его немного занимательным». Не упускать случая делать математику занимательной… Этим искусством Перельман владел в совершенстве.
В одной из своих книг он рассказывает о «Кодексе Юстиниана», созданном в VI веке нашей эры. В «Кодексе» был особый закон «О злодеях-математиках», запрещавший занятия этой наукой. Говоря о научно-популярных книгах, из которых многие авторы начисто удаляют математические выкладки из боязни сделать изложение сухим и отпугивающим читателей, Яков Исидорович писал: «Я не сторонник такой популяризации. Не для того мы тратим целые годы в школе на изучение математики, чтобы выбрасывать ее за борт, когда она понадобится». Перельман постоянно прививал уважение к числу, счету, особенно к большим числам, которые были характерны, например, для планов наших пятилеток (таковы его задачи о миллиардах консервных банок, поставленных одна на другую, или о миллионах тонн угля и стали). В таких случаях особенно умело привлекался парадокс, помогавший создавать интригующе интересный рассказ. Вот, к примеру, очерк об одном из математических монстров - числе 9в9в9. Как пояснить читателю, не искушенному в математике, невообразимую колоссальность этого выражения, в котором всего лишь три девятки? Не производить же вычисление, требующее огромного труда! Но зачем прибегать к такому лобовому приему, далекому от занимательности? Перельман рассуждает по-своему: «Это чудовищное число, но в нем всего лишь только три цифры. Цифра 2 только на семь единиц меньше девятки, но 222 равно лишь 16. Достаточно только начать вычисление этого цифрового великана, чтобы ощутить огромность ожидаемого результата».
Возведя 9 в 9-ю степень (что тоже требует немало времени), вы получите число 387 420 489. Но погодите, главное-то - впереди. Теперь надо возвести 9 в 387 420 489-ю степень. Придется сделать круглым счетом 400 миллионов умножений. Число это никогда никем не было вычислено, а чтобы написать его, потребуется книга в 180 000 страниц, ибо оно состоит из 370 миллионов цифр, и как называется - неизвестно.
Далее следует неожиданная оценка числового исполина: «Количество электронов во всей видимой части Вселенной ничтожно мало по сравнению с этим числовым монстром».
Вот так. Три девятки и обозримая Вселенная.
Однако читателю уготован еще один сюрприз: «У этого числового гиганта есть свой антипод - сверхлилипут: 1 / 9в9в9. И его не прочитать, и оно не имеет названия…».
Оказалось, что «сухая цифирь» может быть изложена настолько живо, что захватит читателя, побудит его не пренебрегать математическими выкладками в книгах, а, следуя им, прочнее закреплять полученные знания.
Глава 4. Написавший библиотеку
«Занимательная геометрия»
Наивысшего расцвета талант и литературная деятельность Перельмана достигли после Великого Октября. Советская власть предоставила ему такие возможности для творчества, о которых ранее он лишь мечтал. Именно с 1918 по 1940 год были написаны основные его произведения.
После выхода в свет «Занимательной физики» прошло почти двенадцать лет. Многие из последующих книг этой серии вышли в свет в 20…30-х годах в ленинградском издательстве «Время» [25] , с которым был тесно связан М. Горький. Сохранились его письма директору издательства и по поводу выпуска книг занимательной серии. В письме от 12 ноября 1926 года содержится высокая оценка их. В другом письме - от 15 декабря того же года - писатель, сетуя на задержку выхода книг, писал: «Очень огорчен, что «Занимательная наука» встретила препятствие дальнейшему росту. Это - глупо и грустно».
Можно не сомневаться, что благодаря вмешательству М. Горького издание серии книг не пресеклось.
Серию продолжила «Занимательная геометрия», вышедшая в свет в 1925 году (выдержала 11 изданий). Параллельно шла деятельная работа и над «Занимательной арифметикой». Когда обе рукописи вчерне были готовы, Перельман не мог не задуматься об их судьбе. В его памяти всплыл разговор с Сойкиным, которому он принес рукопись «Занимательной физики». Тогда, как мы помним, Сойкин выразил опасение, как отреагируют ученые-физики и педагоги на выход книги. Примерно о том же думал теперь сам Перельман: ведь его «Занимательной геометрии» и «Занимательной арифметике» будут противостоять учебники таких корифеев педагогики, как А.Ф. Малинин и К.П. Буренин, чье руководство по арифметике выдержало более 25 изданий, или А.П. Киселева с 30 изданиями курса элементарной геометрии. Их пособия были допущены в качестве официальных учебников, по которым учились миллионы школьников.
И опять невольно на ум пришли сравнения. Вот задача из учебника геометрии. Ложка оливкового масла (20 граммов) вылита на воду. Образовалось пятно поперечником 30 метров. Требуется вычислить толщину пленки. Решается эта задача так: измеряется площадь пятна, затем определяется объем масла и, наконец, высчитывается толщина масляной пленки. При этом используются формула определения площади круга, данные о плотности масла и т.д.
Но ведь об этом же можно рассказать и по-другому, например так. На поверхность воды выливается та же ложка масла. Пятно около 30 метров в диаметре в тысячу раз больше длины и во столько же раз больше ширины ложки. Стало быть, толщина пленки в миллион раз меньше толщины слоя масла в ложке. Право же, решение совсем не трудоемкое, более наглядное, а по точности не уступающее каноническому.
Другой пример - задача из учебника арифметики: «Как умножить 3 275 на 537? Это значит, что надобно взять 3 275 слагаемым 537 раз, а для этого можно взять его слагаемым сперва 7 раз, потом еще 30 раз и наконец 500 раз, и полученные суммы сложить. Иначе говоря, можно 3 275 умножить сперва на 7, потом на 30, наконец на 500, и полученные произведения сложить».
Только тупой зубрежкой можно запомнить это правило умножения. Что в нем наглядного? Ничего!
То же можно сказать и о задачах с купцами и их аршинами, цыбиках чая, бассейнах с трубами…
Но нельзя ли попытаться найти иные - занимательные - способы решения? И появляется задача-