The extra batteries she had ordered for her Apple PowerBook (G4 titanium with a seventeen-inch screen) had finally arrived. In Miami she had bought a Palm PDA with a folding keyboard that she could use for email and easily take with her in her shoulder bag instead of dragging around her PowerBook, but it was a miserable substitute for the seventeen-inch screen. The original batteries had deteriorated and would run for only half an hour before they had to be recharged, which was a curse when she wanted to sit out on the terrace by the pool, and the electrical supply on Grenada left a lot to be desired. During the weeks she had been there, she had experienced two long blackouts. She paid with a credit card in the name of Wasp Enterprises, stuffed the batteries in her shoulder bag, and headed back out into the midday heat.
She paid a visit to Barclays Bank and withdrew $300, then went down to the market and bought a bunch of carrots, half a dozen mangoes, and a big bottle of mineral water. Her bag was much heavier now, and by the time she got back to the harbour she was hungry and thirsty. She considered the Nutmeg first, but the entrance to the restaurant was jammed with people already waiting. She went on to the quieter Turtleback at the other end of the harbour. There she sat on the veranda and ordered a plate of calamari and chips with a bottle of Carib, the local beer. She picked up a discarded copy of the
She folded the paper, took a swig from the bottle of Carib, and then she saw the man from room 32 come out on the veranda from the bar. He had his brown briefcase in one hand and a glass of Coca-Cola in the other. His eyes swept over her without recognition before he sat on a bench at the other end of the veranda and fixed his gaze on the water beyond.
He seemed utterly preoccupied and sat there motionless for seven minutes, Salander observed, before he raised his glass and took three deep swallows. Then he put down the glass and resumed staring out to sea. After a while she opened her bag and took out
All her life Salander had loved puzzles and riddles. When she was nine her mother gave her a Rubik’s Cube. It had put her abilities to the test for barely forty frustrating minutes before she understood how it worked. After that she never had any difficulty solving the puzzle. She had never missed the daily newspapers’ intelligence tests; five strangely shaped figures and the puzzle was how the sixth one should look. To her, the answer was always obvious.
In elementary school she had learned to add and subtract. Multiplication, division, and geometry were a natural extension. She could add up the bill in a restaurant, create an invoice, and calculate the path of an artillery shell fired at a certain speed and angle. That was easy. But before she read the article in
Then, suddenly, she sensed the inexorable logic that must reside behind the reasoning and the formulas, and that led her to the mathematics section of the university bookshop. But it was not until she started on
Pythagoras’ equation
6 = 21
28 = 22
496 = 24
8,128 =
She could go on indefinitely without finding any number that would break the rule. This was a logic that appealed to her sense of the absolute. She advanced through Archimedes, Newton, Martin Gardner, and a dozen other classical mathematicians with unmitigated pleasure.
Then she came to the chapter on Pierre de Fermat, whose mathematical enigma, “Fermat’s Last Theorem,” had dumbfounded her for seven weeks. And that was a trifling length of time, considering that Fermat had driven mathematicians crazy for almost four hundred years before an Englishman named Andrew Wiles succeeded in unravelling the puzzle, as recently as 1993.
Fermat’s theorem was a beguilingly simple task.
Pierre de Fermat was born in 1601 in Beaumont-de-Lomagne in southwestern France. He was not even a mathematician; he was a civil servant who devoted himself to mathematics as a hobby. He was regarded as one of the most gifted self-taught mathematicians who ever lived. Like Salander, he enjoyed solving puzzles and riddles. He found it particularly amusing to tease other mathematicians by devising problems without supplying the solutions. The philosopher Descartes referred to Fermat by many derogatory epithets, and his English colleague John Wallis called him “that damned Frenchman.”
In 1621 a Latin translation was published of Diophantus’
The problem was that the new equation did not seem to have any solution with whole numbers. What Fermat had thus done, by an academic tweak, was to transform a formula which had an infinite number of perfect solutions into a blind alley that had no solution at all. His theorem was just that – Fermat claimed that nowhere in the infinite universe of numbers was there any whole number in which a cube could be expressed as the sum of two cubes, and that this was general for all numbers having a power of more than 2, that is, precisely Pythagoras’ equation.
Other mathematicians swiftly agreed that this was correct. Through trial and error they were able to confirm that they could not find a number that disproved Fermat’s theorem. The problem was simply that even if they counted until the end of time, they would never be able to test all existing numbers – they are infinite, after all – and consequently the mathematicians could not be 100 percent certain that the next number would not disprove Fermat’s theorem. Within mathematics, assertions must always be proven mathematically and expressed in a valid and scientifically correct formula. The mathematician must be able to stand on a podium and say the words
Fermat, true to form, sorely tested his colleagues. In the margin of his copy of