Следовательно, мы заключаем, что свободно расширяющееся излучение черного тела продолжает описываться формулой Планка, но с температурой, падающей обратно пропорционально масштабу расширения.
ДОПОЛНЕНИЕ 5. МАССА ДЖИНСА
Для того чтобы сгусток вещества образовал гравитационно связанную систему, необходимо, чтобы его гравитационная потенциальная энергия превысила внутреннюю тепловую энергию. Гравитационная потенциальная энергия сгустка радиуса
Внутренняя энергия в единице объема пропорциональна давлению
Следовательно, гравитационное сжатие будет преобладать, если
Но для заданной плотности
Условие гравитационного стягивания можно поэтому переписать в виде
или, иными словами,
где
Например, как раз перед рекомбинацией водорода плотность массы равнялась 9,9 × 10- 22 г/см3 (см. математическое допол-нение 3), а давление равнялось[58]:
Поэтому масса Джинса была равна
где
Интересно, что это примерно равно массе больших шаровых скоплений внутри нашей Галактики.
ДОПОЛНЕНИЕ 6. ПЛОТНОСТЬ И ТЕМПЕРАТУРА НЕЙТРИНО
До тех пор, пока сохраняется тепловое равновесие, полное значение величины, называемой «энтропией», остается фиксированным. В достаточном для наших целей приближении энтропия
где
Как раз перед аннигиляцией электронов и позитронов (при температуре около 5 × 109 К) нейтрино и антинейтрино уже вышли из теплового равновесия с остальным содержимым Вселенной, так что единственными частицами, имевшимися в больших количествах в равновесии, были электрон, позитрон и фотон. Мы видим, что согласно табл. 1 полное эффективное число разновидностей частиц перед аннигиляцией составляло[60]
После аннигиляции электронов и позитронов в четвертом кадре единственными частицами, которые остались в равновесии в большом количестве, были фотоны. Эффективное число разновидностей частиц равнялось поэтому просто
Из закона сохранения энтропии следует, что
Это значит, что тепло, выделившееся при аннигиляции электронов и позитронов, увеличило величину
Перед аннигиляцией электронов и позитронов температура нейтрино
Отсюда заключаем, что после окончания процесса аннигиляции температура фотонов оказалась выше температуры нейтрино в
Нейтрино и антинейтрино, даже хотя они и не находятся в тепловом равновесии, дают важный вклад в космическую плотность энергии. Эффективное число разновидностей нейтрино и антинейтрино равно[61] 7/2, или 7/4 от эффективного числа разновидностей фотонов. (Имеются два спиновых состояния фотона.) В то же время четвертая степень температуры нейтрино меньше, чем четвертая степень температуры фотонов, на множитель (4/11)4/3. Следовательно, отношение плотности энергии нейтрино и антинейтрино к плотности энергии фотонов
Закон Стефана-Больцмана (см. главу III) утверждает, что при температуре фотонов
Следовательно, полная плотность энергии после электрон-позитронной аннигиляции равна
Мы можем перевести это в эквивалентную плотность массы, разделив на квадрат скорости света, и найдем тогда