Так как и в книге, и в наших дополнениях уже употреблялся термин «черная дыра», скажем несколько слов о том, что это такое. Основной идеей общей теории относительности является связь между полем тяготения и геометрией пространства-времени. Вблизи массивного тела кривизна пространства, характеризующая отличие его свойств от свойств евклидова пространства, становится более заметной, чем вдали от него. Если данную массу тела
Конечно, предсказания Лапласа были только гениальной догадкой. При скорости, близкой к скорости света, меняются законы механики (специальная теория относительности), при большом потенциале тяготения меняются сами законы тяготения (общая теория относительности). Однако, как это ни удивительно, эти изменения компенсируют друг друга и связь массы и радиуса, при которой свет не покидает тело, дается ньютоновой формулой:
(потенциальная энергия тела единичной массы на поверхности массивного тела массы
Гравитационный радиус
Из сказанного выше ясно, что внешний наблюдатель не может получить от черной дыры никакого сигнала, она как бы исчезает из пространства. Это не означает, что невозможно определить наличие черной дыры в каком-то месте пространства. Межзвездный газ, окружающий черную дыру, может втягиваться в нее силами тяготения; при этом газ, падая на дыру, ускоряется, разогревается и начинает излучать. Сильное излучение можно ожидать в том случае, если черная дыра образует двойную систему с обычной звездой. В таком случае обычная звезда поставляет тот газ, который попадает затем в поле тяготения черной дыры.
В настоящее время во всех деталях изучены аналогичные системы, состоящие из нейтронной звезды и обычной звезды. Такие системы являются источниками рентгеновского излучения. Однако в одном случае есть основания считать, что мы имеем дело именно с черной дырой, а не с нейтронной звездой. Речь идет о рентгеновском источнике в созвездии Лебедя («Лебедь Х- 1»). Анализ движения обычной звезды, находящейся рядом с рентгеновским источником, приводит к выводу, что масса рентгеновского источника около 10 солнечных масс. Нейтронная звезда не может быть такой тяжелой. Есть и другие аргументы в пользу того, что в источнике Лебедь Х-1 находится тяжелая черная дыра.
При этом предполагается, что весьма массивная черная дыра образовалась в ходе эволюции и сжатия из обычной звезды с массой около 30 солнечных масс или больше. Такие звезды (с массами до 100 масс Солнца) в небольшом числе наблюдаются в нашей Галактике. Широко распространено предположение, что в ядрах галактик и в особо ярких источниках излучения — квазарах — также находятся гигантские черные дыры. Падение вещества в гравитационном поле этих черных дыр является источником энергии. Такие черные дыры также возникли сперва из звезд, а затем увеличили свою массу захватом окружающего вещества.
Вернемся теперь к вопросу о первичных черных дырах. Такие первичные черные дыры до сих пор не наблюдались. Предположительно, первичная черная дыра образуется в тот момент, когда размер возмущенной области порядка произведения скорости света на время, прошедшее с начала расширения. Она образуется в том случае, если локальная масса в несколько раз больше средней. Ожидаемая масса черной дыры в примере, приведенном выше, равна
В действительности, как уже сказано, ни одна первичная черная дыра не наблюдена. Значит, количество их во всяком случае невелико. Отсюда можно сделать вывод, что нет сильных возмущений, способных вызвать образование черных дыр, притом даже в малых масштабах.
В 1974 году английский теоретик Хокинг доказал, что черные дыры «испаряются», испуская частицы, энергия которых обратно пропорциональна массе черной дыры. Время полного испарения равно приблизительно 10-28 ×
Таким образом, удается сделать вывод, что даже на очень ранних стадиях Вселенная была более или менее однородна, не было сильных (по амплитуде) коротковолновых возмущений, которые могли бы рождать первичные черные дыры. Косвенно получается дополнительное подтверждение предположения о малости безразмерных возмущений во всех масштабах. Удается заглянуть в прошлое Вселенной еще глубже, чем это было возможно несколько лет назад.
ДОПОЛНЕНИЕ 9. К ИСТОРИИ ОТКРЫТИЯ ФОНА МИКРОВОЛНОВОГО ИЗЛУЧЕНИЯ
И СОЗДАНИЯ ТЕОРИИ ГОРЯЧЕЙ ВСЕЛЕННОЙ
В создании современной космологии огромную роль сыграл Георгий Гамов. Он первый высказал идею, что Вселенная была горячей (1948 год) и дал оценку сегодняшней температуры 6 К (1956 год), несильно отличающуюся от истинного значения около З К. Отдавая должное интуиции Гамова, интересно проследить тот сложный и противоречивый путь, по которому шло развитие науки.
В конце 40-х годов считали, что постоянная Хаббла равна приблизительно 200 км/с на мегапарсек. Заметим, что первоначальное число самого Хаббла было 560 км/с на мегапарсек. Соответствующий возраст Вселенной был несуразно мал: 1–2 миллиарда лет. На эту трудность обращал внимание Альберт Эйнштейн. Значение 200 км/с на мегапарсек, принятое в конце 40-х годов, дающее возраст Вселенной до 5 миллиардов лет, буквально не противоречило геологическим данным о возрасте Земли (4,5 миллиарда лет). Однако близость возраста Земли и Солнца и возраста всей Вселенной естественно вела к мысли, что все химические элементы, из которых состоит Земля и которые мы находим на Солнце, имеют первичное, космологическое, происхождение.
Вайнберг отмечает, что предполагалось наличие первичных нейтронов в горячем и плотном