бесконечности исчезают, если наблюдаемым конечным значениям массы и заряда электрона сопоставить не те параметры
Однако даже после этого успеха оставалось определенное различие в мнениях по поводу важности ультрафиолетовых расходимостей в квантовой теории поля. Многие считали — а некоторые считают и до сих пор, — что проделанная работа позволила лишь спрятать реальные проблемы «под ковер». Вскоре стало ясно, что существует весьма ограниченный класс так называемых «перенормируемых» теорий, в которых бесконечности могут быть устранены путем изменения определений, т. е. «перенормировки» конечного числа физических параметров. (Грубо говоря, в перенормируемых теориях ни одна константа связи не должна обладать размерностью массы в отрицательной степени. Но каждый раз, когда мы добавляем поле или пространственно-временную производную во взаимодействие, мы снижаем размерность соответствующей константы связи. Поэтому только небольшое число простых типов взаимодействия может быть перенормируемыми.) В частности, ясно видно, что широко применявшаяся фермиевская теория слабых взаимодействий была неперенормируемой. (Фермиевская константа связи имеет размерность (масса) -2.) Чувство неудовлетворенности квантовой теорией поля сохранилось и в 50-е и 60-е годы.
Теорию перенормировок я изучил, будучи аспирантом, главным образом по статьям Дайсона [19]. Поначалу мне показалось прекрасным, что только небольшое число квантовых теорий поля могут быть перенормируемыми. В конце концов, ограничения такого типа мы больше всего и хотим найти. Важны не математические методы, которые помогут прийти к осмысленному результату в бесконечном разнообразии физически бессмысленных теорий, а методы, которые несут с собой ограничения, потому что именно эти ограничения могут указать нам путь к единственно верной теории. В частности, на меня большое впечатление произвел тот факт, что квантовую электродинамику в каком-то смысле можно было вывести из принципов симметрии и требования перенормируемости; единственным лоренц-инвариантным и калибровочно-инвариантным перенормируемым лагранжианом фотонов и электронов является в точности изначальный дираковский лагранжиан квантовой электродинамики. Конечно, Дирак пришел к своей теории не таким путем. Он опирался на информацию, полученную в течение веков экспериментирования с электромагнетизмом, а для того чтобы придать окончательную форму своей теории, он использовал идеи простоты (более конкретно, идею, которая иногда называется минимальной электромагнитной связью). Однако надо смотреть вперед, пытаться построить теории явлений, которые еще не изучены столь хорошо на эксперименте, и мы не можем здесь полагаться на чисто формальные идеи простоты. Я думал, что перенормируемость может оказаться ключевым критерием, который и при более общем подходе потребует некой простоты от наших теорий и поможет нам выбрать одну истинно физическую теорию среди бесконечного множества разумных квантовых теорий поля.
Как я поясню в дальнейшем, я бы сказал, что сейчас это выглядит несколько по-иному, но я еще более, чем когда-либо, убежден в том, что использование принципа перенормируемости как ограничения на наши теории наблюдаемых взаимодействий является хорошей стратегической линией. Преисполненный энтузиазма в отношении теории перенормировок, я написал свою кандидатскую диссертацию под руководством Сэма Треймана в 1957 г. на тему о применении некоторой специальной версии принципа перенормируемости для получения ограничений на слабые взаимодействия [20]. А некоторое время спустя я доказал небольшую, но довольно строгую теорему [21], которая завершала доказательство Дайсона [19] и Салама [22] о сокращении всех ультрафиолетовых расходимостей во всех порядках теории возмущений в перенормируемых теориях. Но ничто из сделанного, казалось, не решало важнейшей проблемы — как построить перенормируемую теорию слабых взаимодействий.
А теперь я опять подхожу к 1967 г. Тогда я изучал следствия нарушенной SU(2) × SU(2) — симметрии сильных взаимодействий и обдумывал попытки развития идеи о том, что, возможно, симметрия SU(2) × SU(2) является «локальной», а не просто «глобальной» симметрией, т. е. сильные взаимодействия следовало бы описывать чем-то вроде теории Янга — Миллса, но вдобавок к векторным
И вот как-то в конце 1967 г. (мне кажется, это было, когда я вел машину, направляясь на работу в МТИ[68]) мне пришла в голову мысль о том, что я использовал верные идеи в неподходящей проблеме. Безмассовым должен быть не
Было нетрудно развить конкретную модель, которая воплощала эти идеи. У меня было мало уверенности в правильности моего понимания сильных взаимодействий, поэтому я решил сконцентрировать свое внимание на лептонах. Существуют два левосторонних лептона электронного типа
Чтобы продвинуться дальше, приходится принять определенную гипотезу о механизме нарушения SU (2) × U(1). В перенормируемой SU(2) × U(1) — теории единственным полем, с помощью которого можно было бы придать электрону массу за счет отличных от нуля вакуумных средних, является SU(2) —