собой дифференциальное уравнение. И тут понятие реквизита — одно из наиболее оригинальных у Лейбница — обозначает уже не определяющие, но условия, пределы и дифференциальные отношения между этими пределами, тем самым обретая автономный и точнейший смысл. Целого и частей теперь нет, а есть степени каждого свойства. Так, внутренними свойствами звука являются интенсивность в собственном смысле слова, высота, длительность, тембр; свойства цвета — оттенок, насыщенность, валер; золото — в часто упоминаемом Лейбницем примере —
обладает цветом, весом, ковкостью, сопротив-
{12}
Спиноза в
{82}
лением купелированию в неочищенной азотной кислоте. Реальное в материи обладает не только протяженностью, но еще и «непроницаемостью, инерцией, неистовством и связностью». То, что мы называем
Мы должны отметить одновременно и нередуцируемость этой новой области с точки зрения познания, и, к тому же, ее в двух смыслах переходную роль с точки зрения самого познания. С одной стороны, реквизиты, по сути дела, не являются предположительно интуитивными сущностями первого типа бесконечного, как и теорематическими сущностями второго типа бесконечного, содержащимися в определениях и доказательствах. Это проблематичные сущности, соответствующие третьему типу бесконечного. Математика Лейбница непрестанно превращает проблемы в нередуцируемую инстанцию, добавляющуюся к последовательностям определений; без нее определения, возможно, не могли бы выстраиваться в последовательности: если математические буквенные символы можно комбинировать, то объясняется это тем, что сначала мы ставим проблемы и уже потом берем на себя доказательство теорем.14 В этом смысле хотя аксиомы и касаются проблем, они все же не поддаются доказа-
{13}
О текстуре золота или о связи между его свойствами,
14
{83}
тельствам. Если Характерное и отличается от Комбинаторного, то именно потому, что оно представляет собой подлинное исчисление проблем или пределов. Реквизиты и аксиомы — это условия, но не познания из опыта, в духе Канта — когда они становятся еще и универсальными, а постановки проблемы, которой соответствует некая вещь, взятая в том или ином конкретном случае, — притом, что случаи связаны со значениями переменных в сериях. И представляется, что мы привязаны и едва ли не прикованы к реквизитам: даже определяющие, которые нам удается получить, например, в арифметике или в геометрии, имеют значение не иначе, как по аналогии, и по сути являются внутренними свойствами какой-либо предполагаемой области (таковы первые числа, по которым находят конвергентную серию). Пусть теоремы и доказательства как последовательности определений притязают на силлогистическую форму — мы оперируем «энтимемами», которые только выступают в роли силлогизмов, а сами действуют посредством «внутренних пропусков», эллипсисов и проблематичных сокращений.15 Словом, если Комбинаторное и осуществляет кое-какие свои грезы, — то только благодаря Характерному. Но тут мы переходим к другому аспекту данного вопроса, и аспект этот касается самого познания, а уже не его ближайшего объекта. Мы можем, в действительности, познавать внутренние свойства какой-либо вещи и внешним путем, посредством последовательных экспериментов,
— как это иногда делают животные, — и тогда отношения этих внутренних свойств остаются на уровне обыкновенной эмпирической последовательности. Но
— изучая конкретные случаи — мы можем добраться и до текстуры, т. е. до подлинной связи этих свойств, до внутренних отношений между пределами серий (основания): здесь перед нами рациональное познание, и именно оно объясняет то, что внутренние свойства
15
{84}
годятся на роль определений, исчисления — в предельных случаях — на роль доказательств, а энтимемы — на роль полных силлогизмов.16 Поэтому Лейбниц стремился объединить аксиомы под одной рубрикой с необходимыми истинами и доказательствами (если они, будучи реквизитами, и ускользают от доказательства, то все же их доказывать необходимо — тем более, что они касаются формы целого и частей). Стало быть, удел свойств — то опускать нас на уровень познания, свойственного животным, то возвышать до познания рационального, четкого и доказательного.
Итак, мы имеем три типа включений: самовключения, взаимные включения и включения односторонние, но локализуемые у пределов. Им соответствуют:
16 Достижение или недостижение связи между свойствами (пример с золотом):
III гл 11, § 22–24, IV, гл. 6, § 8-10.
{17}
{85}
ге понятия представляют собой покрывающие его бесконечный разум складки. Абсолютные формы, или Самотождественное — это простые и отдельные друг от друга складки; Определимые формы — складки уже сложные; Реквизиты же с их пределами подобны еще более сложным краям материи (и вводят в дело текстуры). Что же касается монад, обязательно имплицирующих точку зрения или точку опоры, то можно заметить их сходство с драпировками.
Мы подходим к понятиям четвертого типа: это индивидуальные понятия, или монады, являющиеся уже не возможными вещами, но возможными существами (субстанциями). Итак, полная таблица такова: самотождественности, распространения, усиления, индивидуальности;