— Того самого Семенова? Имени которого институт?
— Да. И я счастлив, что получил настоящую семеновскую научную школу. Мало кто знает, что те, кто делал нашу атомную бомбу, были учениками Семенова, поскольку именно он в двадцатые-тридцатые годы заложил теорию цепных реакций. Это была методологическая основа для расчетов…
— Семенов — это титан, — вздыхаю я. — Да, были люди в наше время…
— Титан! — согласился Зенин. — И ученики его были ему под стать. Тот же Бучаченко, например. У нас в науке ведь порядок такой: если ты открываешь какое-то новое направление, надо давать заявку в центральный журнал РАН. Раньше это был «ДАН» (Доклады Академии наук), теперь он называется «Доклады РАН». Так вот, Бучаченко мне поспособствовал в публикации и потом признавался, что ему крепко за это досталось.
…Пару слов о Бучаченко. Простачком, которого можно обвести вокруг пальца, он отнюдь не был. Академик Бучаченко — основатель новой области науки, физики и химии магнитно-спиновых явлений, он автор нескольких открытий — магнитного изотопного эффекта, радиоизлучения химических реакций. Разработал ядерно-магнитно-резонансную спектроскопию парамагнетиков. Лауреат Ленинской и Государственной премий СССР. Чтобы такой человек повелся на лженауку… Значит, убедил его Зенин.
В чем же убедил? И как? Сейчас спросим…
— Что же за статью протолкнул Бучаченко с риском для своей научной репутации?
— О структуре воды.
— Действительно рисковый поступок. А вы-то как дошли до жизни такой, что стали заниматься подобной «лженаукой»?
— Я тогда занимался исследованиями с помощью ядерно-магнитного резонанса. И решил попытаться исследовать структуру воды, которая давно не давала мне покоя, методом протонно-магнитного резонанса. Причем оборудование мне нужно было не абы какое! Через свои связи среди биофизиков я нашел хороший прибор в кардиологическом центре. Пятьсот мегагерц! Это был большой дефицит. У нас на химфаке был только 100-мегагерцовый. А тут в пять раз чувствительнее! Мы шутили тогда, что каждый мегагерц стоил тысячу долларов, так что наш, химфаковский, прибор стоил 100 тыщ долларов, а «пятисотый» — полмиллиона. Не каждое советское учреждение могло такое оборудование приобрести. Вот на нем-то нам и удалось впервые расщепить линию воды на пять линий.
— Насколько я понимаю, одно вещество должно давать одну линию на спектрограмме.
— Правильно. У нас и было одно вещество — бидистиллят, сверхчистая вода без примесей. Но по той теории, которую я разрабатывал, вода должна была содержать структуру — некое стабильное структурное образование. Если это так, если такое образование существует, первым подтверждением этого должно было стать расщепление спектра. Если в воде существуют стабильные образования, то за счет разного экранирования протонов они должны давать мультиплет, а не синплет, то есть несколько линий вместо одной. И этот эффект можно было пронаблюдать только на очень хорошем приборе с высокой разрешающей способностью. На «сотке» это было сделать невозможно. А на «пятисотке» удалось. И не скажу, что сделать это было просто. Это довольно сложный эксперимент, провести который мне помог мой 15-летний опыт работ по химической кинетике. Там есть свои тонкости — нужно получить высокую однородность поля и так далее… Получив результат, я его, разумеется, публиковать не стал, а, как требует научная методология, повторил на частоте в 400 с небольшим мегагерц в Институте химфизики. И уже потом стал думать о публикации.
— Как я понимаю, никакой из существующих в науке теорий подобный эффект не предсказывался, кроме вашей? И был полнейшим противоречием всему, что мы ранее знали о воде?
— Так. Это не просто была сенсация. Это многих шокировало. Потому что ничего, кроме образования димеров и тримеров, о которых мы позже поговорим, не изучалось. Химики вообще в эту сторону не лезли, и я могу их понять. Дело в том, что у воды четыре центра образования водородных связей — два положительных водорода и кислород, имеющий два неподеленных электрона, которые «вытарчивают» отрицательным знаком. Всего четыре центра.
…Тут необходимо дать читателю некоторое пояснение. Молекула воды напоминает тетраэдр. Старые люди, типа меня, помнят советские «треугольные» пакеты с молоком — они как раз и были тетраэдрическими. Натужились? Представили? Каждый угол такого «пакета» — электромагнитный заряд, который готов притянуть заряд другого знака. «Пакет» имеет два плюсовых «контакта» и два минусовых. Через эти «контакты» одна молекула воды может притянуться к другой — торчащим плюсиком к минусику другой молекулы. Но связь эта крайне неустойчивая! Десять в минус двенадцатой секунды может висеть одна молекула на другой, а дальше их вновь растаскивает тепловое движение. Это всем было давно известно, и потому никто никогда не вел речь о том, что в воде могут существовать некие стабильные структуры. Действительно, о какой стабильности может идти речь, если две молекулы могут состыковаться только на 10-12 секунд, а дальше они снова уйти в бесконечное броуновское мельтешение?
Представьте теперь себе пару молекул воды, которые соединились связью — плюсик с минусиком. Два тетраэдрических пакета молока вы как бы соединили вершинками. Сколько осталось свободных вершинок? Восемь минус две занятых — шесть. К каждой из которых может подсоединиться еще по молекуле. Нет-нет, я помню, что это соединение весьма короткоживущее, мне главное, чтобы вы поняли принцип: у каждого «пакета» два плюсика и два минусика на углах. Которыми они могут цепляться к другим пакетам.
Итак, две молекулы могут организовать на какой-то миг димер, а три — тример. Только тример будет существовать еще меньшее количество времени, чем димер, что понятно: если у нас образовалась сцепленная пара молекул, которая вместе существует 10-12 секунд, нужно, чтобы за этот крохотный промежуток времени, пока они не распались, к ним прицепилась третья молекула и какой-то краткий миг они существовали вместе, прежде чем разлететься.
Но молекул в стакане миллиарды миллиардов. В океане — побольше. Им тесно, и они постоянно «трутся», на краткий миг образовывая друг с другом димеры, тримеры и даже более длинные цепочки и «комки». Так?
Вроде так. Вечный хаос без всяких устойчивых структур. Но…
За счет того, что угол Н-О-Н в молекуле воды составляет 104,5 градуса, чисто геометрически могут образовываться пятичленные циклы. Комплекс из 17 молекул, например, образует шесть таких циклов, что открывает дорогу к дальнейшей стабилизации. Как? Следите за мыслью.
Разумеется, конгломерат аж из семнадцати молекул жить будет совсем недолго, но его образование весьма вероятно. Вы только представьте себе водный массив из триллионов тетраэдрических «молочных пакетов», которые контактируют друг с другом вершинками. В этом массиве всегда будет огромное число димеров, поменьше тримеров, еще поменьше «многомеров» и некоторое число вышеупомянутых тетраэдров. А что это значит?
Это значит, что чисто геометрически у получившегося конгломерата молекул появляется единая плоскость с шестью свободными водородными связями. Которые могут сцепиться с аналогичной плоскостью другого подобного конгломерата.
— Становится возможным одновременное участие шести водородных связей! — радуется Зенин. — И тут незнание химической кинетики сыграло с физиками злую шутку. Физики всю жизнь говорили, что больше, чем 6–8 молекул воды сцепиться между не могут: слишком мала вероятность для короткоживущих водородных связей… Но есть такое понятие, как константа димеризации, которая характеризует соединение одной молекулы воды с другими. Концентрация димеров делится на произведение концентрации мономеров. Эта константа равна 10 л/моль. Если спросить людей, незнакомых с химической кинетикой: вот в одной плоскости оказалось шесть связей, константа каждой из них равна 10. А константа шести связей чему равна? В лучшем случае скажут, что 60. А их надо перемножать! И тогда получится 106. Миллион! На шесть порядков увеличивается время жизни! Тут как в бизнесе — с червонца дело не начнешь, а с миллиона уже можно.
…Еще раз повторю читателю: здесь срабатывает чистая геометрия. Из-за характерного угла Н-О-Н молекулы могут образовывать такие короткоживущие объемные фигуры, в которых водородные связи лежат в одной плоскости. А реагирование фигур плоскостями сразу с шестью сцепками на порядки увеличивает время жизни ассоциатов.