went over every detail to make sure the mission would succeed. Weber, waiting for action in Almaty, was frustrated by the delays. “It was absurd because the Iranians probably would have paid a billion dollars for just one bomb’s worth of uranium, and we were talking about dozens of bombs’ worth,” he recalled.

———

By early 1994, there were signs of progress in the struggle to avert a nuclear nightmare. Russia managed to bring its tactical nuclear weapons back from Eastern Europe and the outlying former Soviet republics. The rail cars carrying warheads were upgraded. Ukraine, Belarus and Kazakhstan were moving toward giving up their strategic nuclear weapons. The United States announced plans to buy 500 tons of highly-enriched uranium from Russia and blend it down into reactor fuel. In the first year of his presidency, Clinton appointed several architects of the Nunn- Lugar legislation to high-level policy positions. He named Les Aspin his first defense secretary. William Perry, the Stanford professor, was appointed deputy defense secretary, and became secretary in February 1994. Carter was appointed assistant secretary of defense for international security policy, overseeing the Nunn-Lugar legislation.14 In Russia, after a violent confrontation with hard-liners in October 1993, Yeltsin won a new constitution giving him broad powers and a new legislature.

Nonetheless, what Andy Weber had seen in one factory in Kazakhstan existed across Russia. Kenneth J. Fairfax, an officer in the environment, science and technology section of the U.S. Embassy in Moscow, had arrived in July 1993, assigned to work on improving nuclear power plant safety. He soon discovered the Russian nuclear establishment was showing the same signs of deterioration as the rest of the country. Some of the worst conditions were at facilities that Russia considered civilian, but which held large quantities of weapons-usable uranium and plutonium. The materials were so poorly protected as to be up for grabs. Fairfax sent a series of startling cables from Moscow to the State Department describing what he saw.

Fairfax reported that almost everyone in the atomic sector, from maintenance workers to world-class scientists, was in distress. He started a personal effort to help nuclear scientists link up with American firms. “I would try to get scientists to show me what they could do, to really display their most outstanding talents,” he said. Then he would seek out American companies that could pay for their skills. “I had no big program or budget,” he said. “Just a rolodex and a head for business.” When a few early efforts succeeded, scientists who had been receiving a paltry $7 a month soon were bringing in $3,000 or $4,000. They told colleagues, leading to new contacts, and Fairfax was soon a welcome visitor at the once-secret nuclear cities across Russia. He was even granted an official security pass to enter Minatom’s headquarters in Moscow, the nerve center of the nuclear empire. More than once he recalled waltzing into Minatom while frustrated bureaucrats from Russia’s Ministry of Foreign Affairs were stuck at the security desk at the entrance.

While looking for jobs for nuclear scientists, Fairfax began to notice security standards for some nuclear materials were at times “shockingly poor,” he recalled. One of his early visits in Moscow was to the Kurchatov Institute, the prestigious nuclear research facility led by Velikhov. While on the grounds one day, looking at reactor research, he was shown Building 116, which held a research reactor powered by highly-enriched uranium. The building was surrounded by overgrown trees and bushes. “It was literally a wooden door, with a wax seal on it, with a piece of string. You break the wax seal and open it,” he recalled. Inside, the Kurchatov workers brought out the highly-enriched uranium in the shape of large heavy washers. Fairfax picked up some of them. It was the first time he had ever held highly-enriched uranium in his hands.

Fairfax received “lots of scary information” from technicians and scientists in laboratories and from the security people—including sources in the 12th Main Directorate of the Defense Ministry, responsible for guarding the nuclear arsenal. Fairfax wrote cables describing what he witnessed: holes in fences, storerooms full of materials for which there was no proper inventory, heaps of shipping and receiving documents that had never been reconciled.

Fissile material was scattered across thousands of miles and tucked inside hundreds of institutes and warehouses, much of it in ingots, pellets and powder, held in canisters and buckets, poorly accounted for by longhand entries in ledger books, or not accounted for at all. Fairfax wrote in his cables that the weakest security was often found for highly-enriched uranium and plutonium, usable for weapons but intended for civilian use or basic scientific research. Since it was not headed for warhead assembly, it got less protection. Large quantities of weapons-usable material was stored in rooms and warehouses easy for an amateur burglar to crack: unguarded windows, open footlockers, doors with a single padlock, casks with a wax seal and a near-total absence of sophisticated monitors and equipment.

In Soviet times, the nuclear security system depended on closed fences, closed borders, a closed society, as well as the surveillance and intimidation of everyone by the secret police. In the Soviet system, people were under stricter control than the fissile materials. When the material was weighed or moved, it was tracked in handwritten entries in ledger books. If material was lost, it was just left off the books; no one wanted to get in trouble for it. And factories would often deliberately keep some nuclear materials off the books, to make up for unforeseen shortfalls.15

One of Russia’s leading nuclear scientists at the Kurchatov Institute told a group of visiting U.S. officials in March 1994 that many facilities had never completed a full inventory of their bomb-grade materials, so they might not know what was missing.16 The single greatest obstacle to building a bomb—whether for a terrorist or an outlaw state—was obtaining enough fissile material. Now it was evident from the Fairfax cables that in some places the former Soviet Union was turning into a Home Depot of enriched uranium and plutonium, with shoppers cruising up and down the aisles.

The same month as the Kurchatov briefing, three men were arrested in St. Petersburg trying to sell 6.7 pounds of weapons-usable highly-enriched uranium. The material was smuggled out of a facility in an oversized laboratory glove. Separately, two navy officers and two guards used a crowbar to rip off the padlock on a nuclear fuel storage facility on the Kola Peninsula, stole two fuel assemblies, fled to an abandoned building, and used a hacksaw to open one—and extract the core of uranium.17

Although many of Fairfax’s sources were clearly working outside official channels and taking risks in talking to him, Fairfax felt none of them were spies or traitors; most were scientists, police and even a few former KGB agents who understood the nuclear dangers. Fairfax recalled that one officer in the 12th Main Directorate of the Defense Ministry explained his motives by saying he had worked on nuclear weapons his entire life to defend the Soviet Union, and by helping to point out the deficiencies in Russia, he was still keeping the country safe.18

When the Fairfax cables landed in Washington, Matthew Bunn read them with fascination. “It was just incredible stuff,” Bunn recalled. He was a staff member at the White House Office of Science and Technology Policy. While the cables were distributed to the White House and elsewhere in Washington, not everyone recognized the warning signs. But Bunn was totally floored. The cables, plus a string of nuclear smuggling cases in 1994, showed him that a crisis was coming, and he was standing at the bow.

His father, George Bunn, had been a pioneer in arms control and nuclear nonproliferation, helping to negotiate the nuclear Nonproliferation Treaty of 1968, and serving as the first general counsel of the Arms Control and Disarmament Agency. Matthew graduated from MIT and followed in his father’s footsteps in Washington during the 1980s. He became editor of a magazine, Arms Control Today. Then, just as the Soviet Union was collapsing, he took on a new assignment at the National Academy of Sciences, to direct an in-depth study of the dangers of excess plutonium coming from dismantled Cold War nuclear weapons. Bunn concluded the risks were not only plutonium, but also the much larger supply of highly-enriched uranium. Bunn broadened his study, and the two-volume report recommended that, to the extent practical, every kilogram of the uranium and plutonium should be locked up as securely as the nuclear warheads.19

With the research project complete, in January 1994 Bunn was recruited to come to the White House by Frank von Hippel, the Princeton physicist. Von Hippel, a self-described citizen-scientist, had joined the new Clinton administration, working in the White House Office of Science and Technology Policy. Bunn saw there was little he could do to influence arms control, so he decided to devote almost all his time, with von Hippel, to fighting the leakage of uranium and plutonium in the former Soviet Union.

Bunn’s early days in the White House were discouraging. The government was moving at a glacial pace. The plans at the time were to build one or two pilot projects in Russia over several years to show how to secure fissile material, and hope Russian specialists would learn from the experience. The pilot projects were for low-enriched uranium facilities that didn’t even pose a proliferation risk. Bunn practically shouted his impatience. “We haven’t

Вы читаете The Dead Hand
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×