нормальным созерцаниям, как и к понятиям, можно применить то, что Платон говорит об идеях: что не могут существовать две одинаковые идеи, так как они были бы одной*. Это было бы, говорю я, применимо и к нормальным созерцаниям в геометрии, если бы они в качестве только
esse, a sensibilibus quidem differentia eo, quod perpetua et inmobilia sunt, a speciebus vero eo, quod illorum quidam multa, quaedam similia sunt, species vero ipsa unaquaeque sola085 (Metaph. 1, 6, с этим следует сравнить X, 1). Понимание того, что подобное различие в месте не уничтожает тождества в остальном, могло бы, Как мне кажется, заменить те девять аксиом и более соответствовало бы сущности науки, цель которой познавать единичное из общего, чем построение девяти различных аксиом, основанных на одном соображении. Тогда к геометрическим фигурам относились бы слова Аристотеля: in illis aequalitas unitas est (Metaph. X, 3).
Что же касается нормальных созерцаний во времени, чисел, то для них нет даже различия в пребывании друг подле друга, а есть просто, как в понятиях, identitas indiscernibilium086 и существует только одно пять и только одно семь. И здесь можно было бы найти основание того, что 7 + 5 = 12 не идентичное, как утверждает Гердер в своей «Метакритике», а, как глубокомысленно определил Кант, синтетическое суждение a priori, основанное на чистом созерцании. Идентичное суждение — это 12 = 12.
Следовательно, на созерцание в геометрии ссылаются, собственно, только в аксиомах. Все остальные теоремы доказываются, т. е. приводится такое основание познания теоремы, которое заставляет каждого признать ее правильной: следовательно, выявляют логическую, а не «трансцендентальную истинность теоремы (§§ 30 и 32). Истинность, которая лежит в основе бытия, а не познания, становится Очевидной только посредством созерцания. Поэтому после проведения геометрического доказательства мы обретаем, правда, уверенность в том, что доказанная теорема истинна, но совсем не понимаем, почему то, что она утверждает, таково, как оно есть, т. е. не проникаем в основание бытия, более того, обычно только теперь у нас возникает потребность в нем. Ибо доказательство посредством: указания на основание познания действует только как убеждение (convictio), не как уразумение (cognitio), поэтому было бы, пожалуй, вернее называть его elenchus, а не demonstratio087 . Этим объясняется, что оно оставляет обычно неприятное чувство, которое мы всегда испытываем при неполноте знания, причем здесь недостаточное знание того,
Ибо если сторона ag не равна стороне ab, то одна из них больше другой. Отнимем от большей стороны ab отрезок db, равный меньшей линии ag, и проведем линию dg. Так как (в треугольниках dbg, abg) db равна ag, a bg принадлежит обеим, то две стороны db и bg равны двум сторонам ag и gb, взятым в отдельности, угод dbg равен углу agb, основная линия dg равна основной линии: ab, и треугольник abg равен треугольнику dbg, больший меньшему, что бессмысленно, следовательно, ab не неравна ag, следовательно, равна.
В этом доказательстве мы имеем основание познания истинности: теоремы. Но кто же основывает свою уверенность в этой геометрической истине на подобном доказательстве, а не на познанном созерцанием основании бытия, по которому (в силу необходимости, не допускающей дальнейшего доказательства, а доступной только созерцанию), если из обоих конечных точек линии исходят две другие линии и равномерно наклоняются друг к другу, они могут встретиться только в одной точке, находящейся на одинаковом: расстоянии от обеих конечных точек, потому что два возникающих угла составляют, собственно, только один угол, кажущийся двумя углами только из–за противоположного положения; поэтому нет основания, чтобы линии встретились ближе к одной точке, чем к другой.
Познавая основание бытия, мы выводим как необходимое следствие, обусловленное его условием, в данном случае — равенство сторон из равенства углов,— их связь; основание же познания дает нам только совместное бытие обоих. Более того, можно даже утверждать, что обычный метод доказательства убеждает нас, собственно, лишь в том, что оба равенства выступают в данной, принятой в доказательстве фигуре, а отнюдь не в том, что они всегда выступают вместе; в этой истине (поскольку необходимая связь не показана) мы обретаем только уверенность, основанную на индукции, и покоится наше убеждение на том, что это обнаруживается в каждой фигуре, построенной нами. Правда, столь легко основание бытия бросается в глаза только в таких простых теоремах, как шестая теорема Евклида; однако я убежден, что в каждой, даже самой запутанной, теореме его можно выявить и свести достоверность теоремы к такому простому созерцанию. К тому же каждый a priori сознает необходимость такого основания бытия для каждого пространственного отношения, подобно необходимости причины для каждого изменения. Конечно, обнаружить такое основание в сложных теоремах очень трудно, а здесь не место проводить сложные геометрические исследования. Поэтому только для того, чтобы еще больше уяснить свою мысль, я сведу к основанию бытия не очень сложную теорему, в которой, однако, это основание не сразу бросается в глаза.
Пропускаю десять теорем и перехожу к шестнадцатой: «В каждом треугольнике, одна сторона которого продолжена, внешний угол больше, чем каждый из двух противостоящих ему внутренних». Доказательство Евклида таково (см. рис. 4).
Возьмем треугольник abg, продолжим сторону bg к d, и я утверждаю, что внешний угол agd больше, чем каждый из двух противостоящих ему внутренних. Разделим сторону ag пополам в точке е, проведем линию be, продолжим ее до z p сделаем ez равной еb, соединим точки z и g и продолжим ag до h. Так как ае равна eg и be равна ez, то две стороны ае и eb равны двум сторонам ge и ez, взятым в отдельности, и угол aeb равен углу zeg, ибо это — вертикальные углы. Тем самым основная линия ab равна основной линии zg и треугольник аbe равен треугольнику zeg: а остальные углы равны остальным углам, следовательно, и угол bae равен углу egz. Однако угол egd больше угла egz, следовательно, и угол agd больше угла bae. Если разделить пополам и линию bg, то подобным же образом можно доказать, что угол bgh, т. е. его вертикальный угол agd, больше, чем abg.
Я бы доказал эту теорему следующим образом (см. рис. 5). Для того чтобы угол bag был равен, а тем более превзошел бы, угол agd, линия ba (ибо это и означает равенство углов) должна была бы находиться по отношению к линии ga в том же направлении, как bd, т. е. быть параллельной bd, другими словами, никогда не пересекаться с bd; однако для того чтобы образовать треугольник, она должна (основание бытия) пересечься с bd, т. е. совершить противоположное требуемому для того, чтобы угол bag хотя бы достиг величины угла agd.