и с этой модернизированной точки зрения нужно признать, что оба утверждения по поводу числа полных квадратов в ряду натуральных чисел находятся в совершенно равных условиях — оба являются одинаково ложными или одинаково истинными. Только это важно в контексте данного рассуждения: возникала ситуация, в которой два знания исключали друг друга и оба были одинаково правильными, и из этой ситуации нужно было выходить, создавая новые средства науки.

Чтобы снять возможное впечатление, будто парадоксальная ситуация возникает из-за оперирования «трудным» и немного мистическим понятием бесконечности, разберем еще пример физического парадокса, выявленного Г. Галилеем примерно через две тысячи лет после появления разобранного выше математического парадокса.

Различие между равномерными и переменными движениями стало известно людям уже давно. Но это было лишь наглядное, чувственное знание, не осмысленное в понятиях. Существовавший во времена Аристотеля чувственно-непосредственный способ сопоставления движений, когда время фиксировалось как равное, а сравнивались одни лишь отрезки пройденного телами пути, не позволял выявить различие между равномерными и переменными движениями в виде понятия.

И хотя в представлении древних понятие скорости было результатом и средством сопоставления движений вообще, независимо от их характера, по содержанию и по своему строению оно служило адекватным отражением только равномерных движений. Поэтому когда Галилей приступил к исследованию ускоренных движений, используя для этого понятие скорости, выраженное в формуле v = s/t, то это привело его к логическому противоречию (антиномии). Так как часы, находившиеся в его распоряжении, несмотря на все произведенные усовершенствования, были все еще малопригодны для измерения небольших промежутков времени, Галилей решил замедлить исследуемые движения падения с помощью наклонных плоскостей, а это в свою очередь заставило его сопоставить между собой падение тел по вертикали и по наклонным. Согласно определениям Аристотеля, из двух движущихся тел то имеет большую скорость, которое проходит за одно и то же время большее пространство, чем другое, или то же пространство, но за меньшее время. Соответственно считалось, что два движущихся тела обладают одинаковой скоростью, если они проходят равные пространства в равные промежутки времени.

Галилея эти определения уже не удовлетворяли. Выработанный им способ измерения времени позволил представить понятие скорости в виде математического отношения величин пути и времени. С этой новой точки зрения ничего не изменится, если назвать скорости равными и тогда, «когда пройденные пространства находятся в таком же отношении, как и времена, в течение которых они пройдены…» [Галилей, 1948, с. 34]. Поскольку Галилей уже «подвел» понятие скорости под более широкое понятие математического отношения, сделанный им переход был вполне законен. Равенство отношений s1/t1 = s2/t2 как при s1 = s2 так и при s1  s2 остается справедливым, если t1 и t2 меняются в той же пропорции, что и пути.

Итак, имеются два определения равенства скоростей двух движущихся тел.

Первое: скорости двух тел равны, если за равные промежутки времени эти тела проходят равные пространства.

Второе: скорости двух тел равны, если пространства, проходимые одним и другим, пропорциональны временам прохождения.

Второе определение является обобщением первого. Имея эти два определения, Галилей приступил к сопоставлению конкретных случаев падения тел. Пусть по СВ и СА (см. схему 1) падают два одинаковых тела. Скорость тела, падающего по СВ, будет больше скорости тела, падающего по СА, ибо, как показывает опыт, в течение того времени, за которое первое падающее тело пройдет весь отрезок СВ, второе пройдет по наклонной СА часть CD, которая будет меньше СВ. Отсюда в соответствии с первым определением можно сделать вывод, что скорости тел, падающих по наклонной и по вертикали, не равны.

В то же время известное Галилею положение о том, что скорость падающих тел в какой-либо точке зависит только от высоты их падения, наводят его на мысль, что раз скорости тел в точках А и В, расположенных на одной горизонтали, равны, то они должны быть и вообще равны на отрезках СА и СВ. Он проверяет это предположение на опыте, и действительно оказывается, что отношение времен падения по всей наклонной и по всей вертикали равно отношению длин наклонной и вертикали. Отсюда в соответствии со вторым определением можно сделать вывод, что скорости тел, падающих по наклонной и по вертикали, равны.

Таким образом, следуя рассуждению Галилея, мы получили два противоречащих положения: 1) «Скорости тел, падающих по СА и СВ, равны»; 2) «Скорости тел, падающих по СА и СВ, не равны».

Причину выявленного Галилеем противоречия нельзя искать в произведенном им обобщении условий равенства скоростей. Если бы мы, пользуясь старым условием равенства скоростей, начали сопоставлять движения шаров по СА и СВ, беря отрезки проходимого пути в разных частях СА и СВ, то мы получили бы и при старом определении весьма противоречивые результаты. Скорость падения шара no CB могла оказаться в одном месте больше скорости падения шара по СА, в другом — равной, в третьем — меньшей. Таким образом, рассмотренное развитие понятия скорости и обобщение условий равенства скоростей не являлись причиной противоречия, а были лишь случайными обстоятельствами, которые облегчили его обнаружение.

Причина этого противоречия заключена в том, что понятие скорости, сложившееся из сопоставления равномерных движений и однозначно характеризовавшее эти движения, уже не подходит для сопоставления и однозначной характеристики движений неравномерных.

Подобные логические противоречия, или антиномии, можно часто встретить в истории науки. Оба положения, составляющие антиномию, в равной мере истинны и неистинны. Истинны в том смысле, что они оба действительны, если мы исходим из существовавшего в то время определенного строения исходного понятия. Неистинны в том смысле, что это строение понятия уже не может дать однозначной характеристики новых исследуемых явлений.

Ситуации парадоксов, или антиномий, занимают особое положение в ходе развития науки. Прежде всего в их контексте уже бессмысленно спрашивать: какому из имеющихся знаний соответствует объект, первому или второму. Он не соответствует ни одному из них, он отличен от обоих. Так, благодаря сопоставлению двух исключающих друг друга знаний, относимых к одному объекту, сам объект отделяется от знаний о нем и противопоставляется им как нечто третье, пока не познанное. По выражению Гегеля, сначала в понятии мы видели сам объект, теперь понятие как форма отделяется от объекта. Это первый и, наверное, основной шаг в формировании теоретико-познавательной точки зрения на мир.

Выделение объекта как чего-то отличного от того, что мы видим в знании, и сопоставление знаний друг с другом заставляет сделать следующий шаг и поставить вопрос: чем обусловлено это различие знаний. При ответе на этот вопрос выявляется следующий элемент предмета теории познания: процедуры получения знаний, процедуры познавательной деятельности. Именно в них находят ту причину, которая привела к различию знаний об объекте.

Появление теоретико-познавательной точки зрения делает возможным и собственно методологический подход в разработке средств науки.

Дело в том, что в каждой ситуации могут быть поставлены две разные задачи и в соответствии с этим как практическая, так и исследовательская деятельность могут идти по двум принципиально различным линиям и опираться на различные методы. В одном случае исследование будет направлено на преодоление именно этой, единичной антиномии, на выработку нового специального понятия, «снимающего» антиномию. В другом — оно может быть направлено на выяснение условий появления антиномий вообще (а не только этой единичной), на анализ путей и методов их преодоления, на выяснение структуры вновь получаемого знания в его отношении к прежним, антиномичным.

В первом случае мы будем оставаться в рамках данной специальной науки, математики, физики или химии, будем пользоваться ее специфическими методами. И при этом каждая новая антиномия будет вставать перед нами такой же проблемой, как и предыдущая, и мы будем подходить к ее решению

Вы читаете Избранные труды
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату