AMD включила в состав обеих платформ совершенно новые процессоры под марками Phenom II, Turion II, Athlon II и V Series. Для ультратонких ноутбуков предназначены модели Turion II Neo, Athlon II Neo и V Series. Все представленные чипы выполнены по 45-нм технологии и рассчитаны на установку в новый разъём Socket S1G4. В отличие от 'настольных', мобильные Phenom II не имеют кэш-памяти третьего уровня.
Самые мощные процессоры Phenom II X920 Black Edition (4 ядра, 2,3 ГГц) и Phenom II X620 Black Edition (2 ядра, 3,1 ГГц) рассчитаны на применение в ноутбуках класса 'замена настольного ПК'. Общий объём выделенной кэш-памяти L2 – 2 Мб. Термопакет (TDP) обеих моделей составляет 45 Вт.
Четырёхъядерные Phenom II N930 и P920 работают на тактовых частотах 2,0 и 1,6 ГГц, соответственно, трёхъядерные N830 и P820 – на частотах 2,1 и 1,8 ГГц, двухъядерный N620 – на частоте 2,8 ГГц и выделяет 35 Вт. Общий объём кэш-памяти у четырёх- и двухъядерных моделей – 2 Мб, у трёхъядерных – 1,5 Мб. Буква 'N' в индексе модели означает TDP 35 Вт, а 'P' – 25 Вт.
Тактовые частоты двухъядерных Turion II N530 – 2,5 ГГц, P520 – 2,3 ГГц, двухъядерных Athlon II N330 – 2,3 ГГц, P320 – 2,1 ГГц. Объём L2 – 2 Мб. Одноядерный V120 работает на частоте 2,2 ГГц и выделяет 25 Вт тепла.
Чипы для ультратонких ноутбуков отличаются ещё более низким TDP: двухъядерные Turion II Neo K665 (1,7 ГГц, 2 Мб L2) и K625 (1,5 ГГц, 2 Мб L2) выделяют 15 Вт энергии, двухъядерный Athlon II Neo K325 (1,3 ГГц, 2 Мб L2) и одноядерный Athlon II Neo K125 (1,7 ГГц, 1 Мб L2) – 12 Вт, а одноядерный V Series V105 (1,2 ГГц, 512 Кб L2) – всего 9 Вт.
Поскольку все эти микросхемы были представлены незадолго до публикации этой статьи, пока нет объективных данных об их производительности и каких-либо технических подробностей. Впрочем, такие компании как Acer, ASUS, Dell, HP, Lenovo и Toshiba уже объявили о выпуске ноутбуков на базе некоторых новых процессоров AMD, так что первые тесты должны появиться в ближайшее время.
Мобильные процессоры VIA
Оригинальный одноядерный процессор под названием Nano, призванный объединить традиционную для микросхем VIA экономичность и высокую производительность, появился на рынке в конце мая 2008 года, практически сразу же после Intel Atom. Новинка отличалась гораздо более сложной суперскалярной архитектурой Isaiah с внеочередным выполнением инструкций и системой предсказания ветвлений. В отличие от первых Atom, Nano изначально поддерживали 64-разрядные расширения и технологию виртуализации, и в целом при сравнимом энергопотреблении эти чипы характеризуются более высокой производительностью. Так что если бы VIA Technologies располагала производственными и маркетинговыми возможностями Intel, не исключено, что именно Nano, а не Atom работали бы в подавляющем большинстве современных нетбуков.
Линейка процессоров VIA Nano делится на два семейства: модели с индексом L предназначены для настольных и мобильных компьютеров, а низковольтные модели с индексом U - для неттопов, нетбуков и ультрапортативных компьютеров (UMPC).
Актуальная серия Nano 3000, выпускающаяся с ноября 2009 года, отличается от предыдущей 1000/2000, главным образом, поддержкой набора инструкций SSE4, впервые полностью реализованного в чипах Intel Core i7. Кроме того, как утверждает разработчик, новые процессоры на 20 процентов мощнее и на 20 процентов экономичнее предшественников. Согласно собственным оценкам VIA, чип 3000-й серии с тактовой частотой от 1,3 ГГц более чем на 40 процентов производительнее, чем Intel Atom N270 c тактовой частотой 1,6 ГГц.
Все процессоры Nano выпускаются по 65-нм технологии, оснащаются 16 килобайтами кэш-памяти L1 и 1 мегабайтом кэш-памяти L2 и работают с системной шиной 800 МГц. Тактовые частоты – от 1 до 2 ГГц, термопакет – от 5 до 25 Вт. Микросхемы рассчитаны на установку в разъём NanoBGA2 и совместимы по контактам с чипами предыдущего поколения VIA C7.
Во второй части статьи мы познакомим вас со справочной информацией обо всех актуальных мобильных процессорах, а затем поговорим о том, какие из них можно считать лучшим выбором для портативных компьютеров разных классов.
Суровый российский Motion Capture
Автор: Юрий Ильин
В московской компании iPi Soft разработали уникальную систему захвата движений iPi Desktop Motion Capture, которая не требует оборудования, стоящего десятки, если не сотни тысяч долларов. Специальные костюмы Motion Capture с датчиками и метками тоже не нужны. Всё это заменяют алгоритмы машинного зрения, распознающие людей на видео, снятом обычными камерами.
Технология Motion Capture или, если по-русски, "захват движений" позволяет оцифровать движения актёра и использовать их для управления трёхмерной моделью персонажа. Захват движения активно используется и в компьютерных играх, и в анимации, и в кинематографе. "Удивительный случай с Бенджамином Баттоном", "Рождественская история" и "Аватар" - наиболее свежие примеры интенсивного использования Motion Capture.
Впрочем, у создателей iPi Desktop Motion Capture не было опыта работы в кино или игровой индустрии. "Изначально мы занимались разработкой программного обеспечения для бизнеса, - рассказывает основатель iPi Soft Михаил Никонов. - А эта идея возникла как-то спонтанно. Началось всё с того, что я раздумывал о разработке компьютерной игрушки - сугубо в качестве хобби. Меня поразило, насколько сложно сейчас делается захват движения".
Типичная система захвата движения "промышленного уровня" - это немаленький зал, внушительное количество специализированных камер (порой - десятки) и производительные серверы для обработки поступающих данных (формирование и обработка снятого "облака точек" в режиме реального времени требует более чем серьёзных мощностей). Стоимость полного комплекта оборудования - это пяти-, а то и шестизначные суммы в долларах.
В iPi Soft попытались разработать систему, которая позволяла бы осуществлять захват движения с помощью самых что ни на есть бытовых устройств - мощного ноутбука и нескольких обыкновенных цифровых видеокамер. Цена тоже куда доступнее: стоимость программного обеспечения iPi Soft составляет 500 долларов.
Распознавание образов
Системы захвата движения бывают разные, но почти каждую из них можно отнести к одному из двух типов: первый основан на обработке видео, а в другом используются специальные датчики. Те из них, которые не требуют датчиков, по объективным причинам вышли в лидеры.
Обрабатывать видео тоже можно по-разному. Некоторые системы требуют использования маркеров - особо выделенных областей на специальных костюмах для Motion Capture. Отыскать маркеры в отснятых кадрах относительно нетрудно - это не требует сложных алгоритмов. Существуют и безмаркерные системы - они, как можно догадаться по названию, не требуют маркеров и основаны на распознавании образов.
Считается, что безмаркерные системы прогрессивнее, и (по крайней мере с технической точки зрения) это чистая правда: технологии, лежащие в их основе, более сложные и наукоёмкие. Компьютер нужно научить отличать левую и правую стороны персонажа, а бликующие поверхности (например, блестящая ткань) способны сбить безмаркерные системы с толку. Фактически тут требуется полноценное машинное зрение, а данная область остаётся всё ещё недоразведанной территорией.
В системе iPi Soft маркеры не используются из принципа: это слишком долго и утомительно. Одна только подготовка и калибровка маркерной системы занимает полчаса-час, то есть студию захвата движения приходится резервировать на целый съёмочный день - а это стоит тысячи долларов. Вдобавок, как рассказал