биоплёнок, по-английски называемых биофильмами. Это большие подложки, на которых живёт бактериальная культура - в планарном исполнении, если угодно, на плоскости. В нужных нам условиях эти бактериальные клетки перестают делиться, но к счастью, это не так уж важно: в биоплёнке такая клетка может жить до четырёх месяцев, не делясь. За эти четыре месяца она должна выработать такое количество водорода, что всё это будет вполне оправданно.

Ещё один пока не решённый вопрос - как улавливать производимый биоводород и как его затем транспортировать. Эта часть проекта пока остаётся у нас в тени, потому что, подчеркну ещё раз, наши усилия пока направлены преимущественно на генные манипуляции, на создание мутантов данных бактерий, у которых производство водорода выведено на максимум.

- Вероятно, один из первых вопросов, который возникнет у обывателей, такой: каких побочных явлений можно ожидать, и насколько эти генно-модифицированные бактерии могут быть, скажем, опасны для человека?

- Эти бактерии совершенно не патогенные, ни в каком виде. Поэтому от того, что вы осуществляете какие-то манипуляции с их геномом, плохо или хорошо может быть им, а больше - никому. Это первый момент.

Второй момент заключается в том, что продукты их жизнедеятельности могут быть весьма разнообразны в зависимости от того, в каких внешних условиях они существуют. Однако выделяемые ими вещества представляют собой нетоксичную органику, не представляющую никакой опасности.

- То есть производство получается предельно чистым само по себе?

- Да. Это один из самых чистых видов биотоплива не только по продуктам сгорания (продукт сгорания водорода - это вода), но и по технологии производства. Отходы - те же, как если бы данные бактерии находились в своей естественной среде. Их колонии можно встретить в знаменитом американском заповеднике - Йеллоустоунском национальном парке, где они живут в горячих источниках и ничего не загрязняют.

Нет отходов ещё и потому, что нет какого-то биотехнологического производства - в отличие от того, что имеет место при производстве других видов биотоплива, например, когда надо использовать какие-то растительные культуры, а на выходе остаются продукты их переработки.

Это же обычная бактериальная клетка, которая и так живёт в огромных количествах в различных уголках Земного шара, но при этом она не вредит ничему, никакой экологии.

- По вашим оценкам, через сколько лет бактериальное производство водорода удастся вывести на промышленный масштаб?

- Всегда хочется быть оптимистом. Мы надеемся, что геномную часть мы доделаем года за два, за три. Сейчас всё, что связано с моделированием, в базовом варианте готово. Вышли публикации, которые показывают, что построенная модель работоспособна, она корректно объясняет существующие экспериментальные данные и одновременно выдаёт предсказания, которые можно проверить.

Пока не до конца просчитаны части, связанные с мутантами и с регуляцией на уровне генома. Тем не менее даже в её нынешнем виде модель можно использовать для предсказания мутантов, оптимальных с точки зрения наработки биоводорода. Что пока совсем не сделано на модельном уровне - это анализ последствий встраивания в геном Rhodobacter новых генов. Такое включение - экспериментальный процесс, но вот описать его последствия на уровне количественного моделирования и компьютерного счёта (чтобы понять, какие гены надо встроить и куда, а также на что и как их встраивание повлияет) - это нам ещё предстоит.

С другой стороны, не дожидаясь наших результатов, не дожидаясь, пока все эти численные, математические вещи сработают, наши коллеги уже вовсю делают мутантов, которые, как я уже сказал, имеют в три раза большую скорость производства водорода по сравнению с диким типом, так что мы движемся параллельно.

Кстати говоря, мы работаем со вполне определённым видом бактерий Rhodobacter, которые, по существующим оценкам, являются лучшим объектом для подобного рода исследований и последующего использования. Родственные виды 'работают' хуже, потому что у них чуть-чуть иначе устроен метаболизм, нет отдельных биохимических реакций, так что даже если их 'оптимизировать', результат будет далёк от теоретического максимума.

Если за два-три года мы доделаем эту лабораторную часть, то ещё года три-четыре уйдёт на то, чтобы научиться делать всё то же самое, но в промышленных масштабах. Биоплёнки уже делаются, но опять же в лаборатории. Предстоит ещё разработать 'циклический' вариант, который я упомянул, и научиться с минимальными потерями улавливать производимый водород.

- А наше государство каким-нибудь образом уже выражало своё отношение к этому проекту?

- По большому счёту, нет. В сентябре мы написали один грант - его результаты будут известны довольно скоро; недавно подали заявку на совместный российско-американский грант в области альтернативной энергетики, его результаты будут обнародованы 1 мая этого года. Тем не менее я убеждён, что данное исследование, особенно наше сотрудничество с американской группой, вполне вписывается в инновационные инициативы 'сверху', направленные на то, чтобы уйти от сырьевой зависимости российской экономики.

- Учитывая, что высшие чины государства связаны именно с нефтью и газом, не ожидаете ли вы активного сопротивления переходу на биотопливо?

- Вопрос, на мой взгляд, куда более сложный. Дело ведь не только в политике власть предержащих. Дело в нефтяных компаниях. Нефтяные, нефтедобывающие, нефтетранспортирующие и нефтеперерабатывающие предприятия крайне заинтересованы в сохранении status quo и той бизнес- модели, по которой они работают. Понятно, что запасов нефти у нас на 40-45 лет, запасов газа - на 200 лет... Это означает, что ещё 40-45 лет можно будет безбедно жить, производя минимальные инвестиции в принципиально новые проекты, которые ещё могут ничего и не дать, ведь может ничего и не получиться.

Может оказаться, что, когда вы перейдёте от всех этих работ к промышленным масштабам, то либо себестоимость окажется в десять раз выше, чем ожидалось, либо бактерии будут плохо себя чувствовать на огромных биоплёнках, площади которых измеряются отнюдь не сотнями квадратных сантиметров.

Но всё равно надо пытаться. Пытаться создать такого эффективного продуцента биоводорода минимальными средствами, то есть сначала смоделировать, а потом ввязываться в какую-то технологическую работу.

- Потребуются ли какие-то специфические промышленные мощности? Что-либо технологически совершенно не освоенное в России?

- Первое, что потребуется, - это подготовка отходов, которые надо теперь не выкидывать, а селектировать и аккумулировать для последующего использования. Их надо будет как-то собирать. То есть либо разворачивать производство рядом с источниками промышленных отходов, либо учиться их собирать и транспортировать. Тут надо понять, что дороже - перевозить субстрат для этих бактерий или затем транспортировать водород. Это первый момент.

Второй - это, конечно, технология улавливания водорода. Это самый обычный водород H2, который в ничтожных количествах присутствует в атмосфере. Нужна технология улавливания с минимальными потерями. Чтобы не было как с нефтью, меньше половины которой мы выкачиваем из пластов, а затем обнаруживаем, что в заброшенных пластах снова полно нефти, и её можно снова качать.

Чтобы такого не происходило, возможно, потребуются какие-то новые технологии. Во всяком случае, я ничего не знаю о готовых технологиях улавливания биоводорода в России. И я почти уверен, что у нас нет правильных технологий, если потребуется эффективно селектировать и транспортировать отходы. Опять- таки надо считать экономические модели - с прямыми затратами и с косвенными, связанными с той же экологией, а этого вообще никто не умеет оценивать.

Допустим, мы сделаем так, что два процента энергетики в России станет водородной, и, допустим, это потребует определенных инвестиций. Как быстро они окупятся? При этом в расчёт окупаемости надо

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату