ответ на действия самого червя, которые будут осуществляться в результате активности мышечной системы, управляемой в свою очередь нервной системой. А с помощью модуля 3D-визуализации исследователи могут наблюдать как саму нейронную и мышечную активность в мельчайших деталях, так и ее результат - поведение виртуальной нематоды.
Над исследованием и моделированием различных систем C. elegans работают многие серьёзные лаборатории США, Европы, Японии. Однако именно так, как у нас, задача поставлена впервые. Мы попытались объединить все уже имеющиеся данные в единый многофункциональный программный комплекс. Успешное выполнение проекта позволит получить новые знания о механизмах работы нервной системы как целого, так и детально, на уровне отдельных нейронов, изучить принципы организации функциональных блоков биологических нейронных сетей, которые в перспективе могут быть использованы для проектирования искусственных нейронных сетей нового поколения.
- Какие вычислительные мощности и программное обеспечение вы используете для моделирования?
- Пока для полноценной работы симулятора хватает мощного персонального компьютера, хотя видно, что по мере дополнения системы большими объёмами новых данных этот баланс может быть нарушен. Если быстродействия не будет хватать, есть пути для оптимизации и распараллеливания.
Что касается программного обеспечения, арсенал достаточно прост. Собственно симулятор, как физический, так и нейронный, разработан самостоятельно и реализован на языке C++ с использованием стандартной библиотеки STL; вся 3D-визуализация реализована с помощью технологии OpenGL, что позволяет запустить программный комплекс под той или иной операционной системой с минимальной адаптацией кода.
- Что 'умеет' созданная вами нематода?
- Мы предложили оригинальную схему гибкого каркаса тела нематоды, повторяющего форму биологического прототипа, оптимизированную для крепления мышечных клеток в тех же позициях, в которых они расположены у реального червя. Мы первые предложили 3D-модель мышечной системы C. elegans, в которой каждая мышечная клетка (из 95) реального организма будет иметь свой аналог.
Геометрические и механические свойства воспроизведены максимально точно, включая позиции нейронов и архитектуру связей между ними.
Для этого есть ряд существенных причин. Из-за особенностей строения нейронов C. elegans для их моделирования требуется учитывать в расчётах реальные пути соединений между нейронами, изменение сигнала вдоль них и время его распространения. Наша концепция удовлетворяет этим требованиям и предоставляет идеальный способ визуализации структуры межнейронных соединений, включая нелинейные участки и области ветвления, а также отображения динамики нейронной активности.
Для этого линейное соединение между каждой парой нейронов будет заменено на ряд последовательных сегментов, задаваемых системой промежуточных точек, которые будут повторять ход реального соединения. Каждая такая точка одновременно будет выполнять роль 'передаточной станции' для расчёта затухания сигнала и обеспечения необходимой задержки по времени, а также в соответствующей ситуации может стать точкой ветвления.
Данные для внесения информации такого рода в модель в основном извлекаются из микрофотографий нейронов, что является трудоёмким процессом. Один из этапов в рамках этой задачи нам удалось максимально упростить посредством создания визуального 3D-редактора нейронной сети.
В результате нам пока удалось 'запустить' лишь около 10-15 процентов всей нервной системы, преимущественно относящейся к вентральному нервному корду (брюшной нервной цепочке), управляющему мышечной системой и обеспечивающему базовую двигательную активность (синусоидальное поступательное движение вперед или назад).
Мы уже можем наблюдать реалистичное поступательное движение вперёд, его смену на противоположное движение при касании преграды (пока посредством искусственного переключения фазы синусоидального сигнала, подаваемого на мышцы).
Ещё наша нематода 'умеет' поворачиваться на 90° и продолжать движение вдоль препятствия. Более сложные движения и поведенческие паттерны (изменение скорости или направления, повороты, поисковое поведение, реакция избегания раздражителя и т.д.) достигаются при участии дополнительных сигналов из головного нервного ганглия, до полноценной работы которого в рамках модели ещё далеко.
Возможность реализации сенсорной системы заложена в симулятор и запланирована, однако пока это одна из наиболее сложных частей задачи, так как практически неизвестна кодировка сигналов от рецепторов. Необходимы подробные консультации со специалистами, изучающими нервную активность этой нематоды экспериментально. Над налаживанием контактов и сотрудничества с исследовательскими группами, работающими в этой области, мы сейчас тоже работаем.
- Каким будет следующий шаг?
- Несмотря на серьёзный задел, даже для полного моделирования нервной системы C. elegans потребуется ещё немало поработать. Прежде всего, необходимо развивать методологию моделирования биологических нейронных сетей и уточнять и усложнять модели нейрона и межнейронных соединений и взаимодействий. Это будет происходить по мере продвижения проекта и получения новой информации, в том числе в результате сотрудничества с коллегами, изучающими нервную систему C. elegans экспериментально. Кроме того, мы планируем улучшить программный инструментарий для обеспечения высокой эффективности работы со средой моделирования.
Следующий шаг - последовательная настройка, изучение и 'отладка' отдельных фрагментов нейронной сети, в том числе на основе опубликованной информации об исследовании или моделировании этих фрагментов, которую ранее было невозможно проверить на практике из-за отсутствия действующей модели организма.
Несмотря на то что архитектура нейронной сети C. elegans известна, многие механизмы её работы до сих пор не объяснены. Для некоторых фрагментов нервной системы существуют предполагаемые объяснения их механизмов действия и теоретические модели, а для многих и вовсе отсутствуют. Все они требуют проверки, которая может быть проведена как раз с помощью многофункциональной интерактивной среды моделирования, созданию и использованию которой посвящён наш проект.
Если мы сможем всё это сделать, далее мы планируем ввести в модель известные данные, касающиеся сенсорной системы, и подключить её к нервной системе.
- Какие ещё интересные исследования ведутся в этой области?
- Один из наиболее масштабных проектов - The Blue Brain Project, начатый в 2005 г. с моделирования фрагмента неокортекса (новая кора головного мозга, отвечающая за высшие нервные функции) крысы, построенного на результатах 3D-оцифровки 10000 нейронов и 3•107 синапсов реальной нервной ткани.
Для накопления этой информации потребовалось пятнадцать лет кропотливой экспериментальной работы. Исследователи успешно завершили эту фазу и перешли к следующей - моделированию фрагмента неокортекса человека. Это очень смелый, амбициозный проект, однако многое здесь пока непонятно. Например, не всё ясно с входной и выходной информацией, поступающей в этот фрагмент, непонятна роль связей неокортекса с другими отделами мозга, которые пока отсутствуют в симуляции. Неясно также, как в таких условиях понять, правильно работает этот фрагмент или нет.
Существующий на данный момент в виде модели фрагмент мозга человека эквивалентен примерно 1/10000000 части целого мозга. Таким образом, здесь мы видим попытку подойти к проблеме изучения принципов работы нервной системы с другого конца: вместо моделирования простейшего существа, наоборот, взяться за самую сложную существующую нервную систему, но смоделировать малый ее фрагмент.
Среди важнейших достижений стоит отметить разработанную в 2007 г. в Массачусетском технологическом институте технологию оцифровки структуры нервной ткани с высоким разрешением (MIT Technology Review).