стандартных случайных чисел.

Различают физические датчики случайных чисел (основанные, кстати, на использовании упомянутых выше 'шумящих' приборов) и генераторы псевдослучайных чисел (это специальные компьютерные программы, имеющие в языках программирования названия RAND или RANDOM).

Конструирование физических датчиков основано на том, что двоичное представление стандартного случайного числа α (а именно такое представление чисел реализуется в компьютере) имеет вид

α = 0,10011001010...

то есть целая часть числа равна нулю (ведь α расположено между нулем и единицей), а в 'хвосте', следующем после запятой (этот 'хвост' по научному называется мантиссой, а нули и единицы заполняют разряды мантиссы), стоят нули и единицы. Появление нуля и единицы (вне зависимости от значений в соседних разрядах) происходит с равной вероятностью (то есть с вероятностью 1/2).

Далее нужно сконструировать тот самый 'шумящий' прибор, выдающий или не выдающий случайный сигнал в данный момент времени. Получение стандартных чисел αj сведется к формированию соответствующих 'хвостов' (мантисс) с помощью многократного обращения к прибору (наличие сигнала даст единицу в разряде мантиссы, отсутствие его даст нуль).

Определенная сложность состоит в том, что для применения методов Монте-Карло требуется прибор, позволяющий получать нули и единицы в разрядах мантиссы с равной вероятностью.

К слову, при получении чисел (шифров) в криптографии последнее требование желательно, но не обязательно. Здесь нет нужды увязывать наборы нулей и единиц с приведенным выше представлением стандартного числа αj. Если обнаруживаются слишком длинные серии нулей или единиц, то реализуются специальные алгоритмы, удаляющие следы повторяемости. Это тоже обуславливает существенное отличие 'криптографических' чисел от стандартных случайных чисел, используемых в методах Монте-Карло: для последних длинные серии нулей и единиц в мантиссе вполне допустимы.

- Какие сигналы можно использовать в физических датчиках?

- Можно крутить рулетку, раскрасив предварительно круг в два цвета (например, в красный и черный); красный цвет может соответствовать единице, черный - нулю. К слову, этот возможный способ получения стандартных случайных чисел обусловил название методов Монте-Карло, ведь в знаменитом игорном центре тоже крутят рулетку. Недостаток этого способа получения случайных чисел: долгое время реализации и отсутствие автоматизации процесса получения случайных нулей и единиц. Зато здесь более-менее гарантирована вероятность 1/2, если круг раскрашен двумя цветами пополам.

Автоматизация процесса формирования мантиссы стандартного случайного числа связана с применением различных случайных шумов. Иногда используются шумы самого компьютера. Более надежными и быстрыми считаются квантовые генераторы случайных шумов, в которых используются специальные свойства потоков малых (элементарных) частиц.

Проблему получения равных вероятностей появления нуля и единицы часто решают следующим образом. Сигнал замеряют дважды. Возможны следующие исходы: оба раза сигнал был (состояние СС), оба раза сигнала не было (состояние НН), первый был - второго не было (состояние СН) и первый не был - второй был (состояние НС). Если даже вероятность появления сигнала не равнялась в точности 1/2, то все равно состояния НС и СН являются равновероятными. То есть можно фиксировать только эти два состояния (приписав, например, состоянию НС единицу, а СН - нуль), а состояния СС и НН игнорировать.

Есть много ученых и практиков, убежденных в том, что только физические датчики могут дать 'настоящие', 'поистине случайные' наборы нулей и единиц. Ирония ситуации состоит в том, что уверенность этих исследователей часто зиждется на незнании природы того или иного шума (а вдруг он возникает благодаря каким-то вполне детерминированным - неслучайным - процессам?!).

Применение физических датчиков в расчетах по методу Монте-Карло имеет следующие трудности и недостатки. Во-первых, надежный датчик представляет собой недешевый прибор, в котором кроме всего прочего должны быть предусмотрены быстрые обмены информацией с компьютером. Во-вторых, требуется постоянная проверка выдаваемых датчиком последовательностей (здесь используется мощный аппарат критериев и методик математической статистики), так как даже сверхнадежное техническое устройство дает сбои. В-третьих, имеются отмеченные выше трудности получения равномерного распределения стандартного случайного числа.

Поэтому большинство расчетов по методу Монте-Карло производится с использованием генераторов псевдослучайных чисел.

- Как устроены генераторы псевдослучайных чисел?

- Большинство таких генераторов основаны на применении так называемого метода вычетов и его модификаций. Идея довольно проста. Берется дробное число αi с большим 'хвостом' (то есть с длинной мантиссой), умножается на большое целое число M, в результате получается большое целое плюс дробная часть. Потом целую часть результата убирают, а дробную берут в качестве следующего числа:

αi+1 = {Mαi}

Оказывается, если множитель M взять достаточно большим (например, в современных генераторах используются множители порядка M = 5100109) получается, что 'хвосты' αi+1 ведут себя как настоящие стандартные случайные числа α.

На самом деле 'настоящее' (теоретическое) значение стандартного случайного числа получить невозможно, так как α представляет собой дробь с бесконечной мантиссой, состоящей из нулей и единиц (такую дробь в принципе воспроизвести нельзя). Здесь ситуация похожа на проблему воспроизведения вещественных (в частности, иррациональных) чисел на компьютере.

На практике в методе вычетов при представлении чисел αi берут 'длинные' мантиссы (например, в современных генераторах используется T = 128 разрядов мантиссы).

В методе вычетов имеется также проблема периодичности: не позднее, чем через 2T шагов произойдет 'зацикливание' генератора. В расчетах по методу Монте-Карло не рекомендуется использование более чем L/2 обращений к генератору; здесь L - длина периода, равная числу шагов метода вычетов, после которого начинается повторение последовательности αi. При удачном подборе множителя M можно получить величину периода L = 2T - 2 (это едва ли не 'рекордный' результат). Для T = 128 величина L/2 равна 2125, этого вполне хватает для широкого класса современных задач, решаемых с помощью численного статистического моделирования.

Решение проблем конечности мантиссы (периодичности) не гарантирует качества получаемых чисел αi. Требуется проведение тестов, показывающих, что эти числа по свойствам близки к настоящим (теоретическим) стандартным случайным числам α (тем, что имеют бесконечную мантиссу). Здесь используют широкий спектр критериев и методик математической статистики.

Тестом можно считать и любую задачу с известным ответом, решаемую методом Монте-Карло. В этом смысле процесс проверки генераторов псевдослучайных чисел неограничен. Более того, для любого генератора, основанного на методе вычетов, можно найти 'тяжелую' задачу, с которой он 'не справится'

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату