его планетарном атоме точку опоры для того, чтобы со временем перевернуть весь мир обжитых представлений о ходе вещей в природе. Еще никто не догадывался, что так далеко зайдет дело и подвергнутся пересмотру даже фундаментальные и, как думалось веками, неприкосновенные основы физического познания. Среди них классическая причинность явлений. Сам датчанин еще не догадывался об этом. В его тогдашней теории электрон на стационарных орбитах двигался вполне классически, а квантовым подданным становился только при перескоках по лестнице разрешенных состояний атома. Как смешно сказал чуть позднее Брэгг, Бор предложил физикам пользоваться по понедельникам, средам и пятницам классическими законами, а по вторникам, четвергам и субботам — квантовыми. Никто еще не знал, произойдет ли переход на полную квантовую неделю. И никто не смог бы предсказать, что этот переход займет полтора десятилетия.
Начинающий лидер, внешне так мало похожий на законоучителя и вождя, сидел тогда в кабинете Резерфорда, защищая и представительствуя только самого себя. А поколение, которому история предназначила под его бессменным водительством совершить громадные дела, еще играло в детские игры под небесами Англии, Германии, Италии, России, Швейцарии… И ничего не ведало о «гадких квантах» (как говаривал Эйнштейн). Забавно подумать, что Вольфгангу Паули минуло тогда всего тринадцать, а Энрико Ферми и Вернеру Гейзенбергу не было и двенадцати. Эугену Вигнеру — одиннадцати, Полю Дираку исполнилось десять, а Лев Ландау только что отпраздновал свое пятилетие… И хотя уже готовы были выйти на сцену старшие — тридцатилетний Макс Борн, двадцатипятилетний Эрвин Шредингер, девятнадцатилетний Луи де Бройль, — датчанин еще ничего не знал о них, как и о всех других будущих участниках начинавшейся драмы. Поколению предстояло быть многоязычным, пестрым по возрасту и прошлым заслугам… Ему предстояло еще сформироваться. Однако знамя именно этого поколения, покуда что нерасшитое, неразвернутое и даже к древку не притороченное знамя, уже привез с собою в Манчестер Нильс Бор.
И Резерфорд с нестареющим своим чутьем тотчас почуял тот ветерок из будущего, под которым заплещется это знамя. Можно бы в шутку сказать, что ветерком из будущего тянуло с лестницы квантованных уровней энергии в атоме. Ветерок из будущего подстегивал электроны, уже наполовину презревшие классические правила поведения и непонятно скачущие с орбиты на орбиту. И что самое удивительное — без всяких видимых причин выбирающие для скачка тот или иной из возможных вариантов. Тот или иной! Тут уже предчувствовался конфликт с классической однозначной причинностью, не допускающей подобных вольностей.
В самом деле, Резерфорд недаром еще до внезапного приезда Бора написал ему, что в гипотезе квантовых скачков электронов есть серьезный камень преткновения: «…как решает электрон, с какой частотой должен он колебаться, когда происходит его переход из одного стационарного состояния в другое?» Ведь и вправду получалось, что электрон вынужден заранее это решать.
В классической теории такой странной проблемы не возникало: электрон излучал, непрерывно колеблясь или вращаясь, и частота излученного им света прямо указывала на частоту его колебаний или вращения. А теперь все зависело от величины скачка электрона — от глубины его безостановочного падения в атоме: случится большой скачок — произойдет большая потеря энергии — большим будет излученный квант — высокой частота испущенного света. А малым окажется скачок — малым будет квант — малой частота. Но откуда знает электрон, сорвавшийся с устойчивой орбиты, где он остановится, на какую нижележащую орбиту сядет? А логика требовала, чтобы он обязательно знал это заранее, ибо уже на старте все определял финиш. Тут сказывалась принципиальная особенность квантов, как простых порций световой энергии: каждый квант — частица света одного цвета. Квант монохроматичен и элементарен по определению: у него нет «внутреннего устройства» — в нем не могут быть намешаны электромагнитные колебания разных частот. И потому уже в момент начала скачка электрон обязан «сделать выбор» — какой квант испускать, иначе говоря — с какой частотой колебаться.
Это выглядело мистически. И неспроста с течением лет пошла гулять по миру философическая молва, будто новая — квантовая — физика признает «свободу воли» электрона. Резерфорд в своем письме словно предугадал эту будущую неприятность.
Естественно, они и об этом говорили в том нескончаемом споре на исходе марта 13-го года, хотя тут уж речь шла не о тексте, а о подтексте боровской статьи. Но споры о подтексте обычно и бывают самыми многозначительными. И всего дольше не забываются. Когда почти через пятьдесят лет — весной 1961 года в Москве — в тесном кругу физиков-теоретиков Бор вспоминал прошлое и кто-то спросил его: «Как отнесся к вашей теории Резерфорд?», последовал немедленный, совершенно боровский по стеснительной улыбчивости ответ: «Резерфорд не сказал, что это глупо, но…» И Бор почти дословно повторил замечание из старого резерфордовского письма: «…но он никак не мог понять, каким образом электрон, начиная прыжок с одной орбиты на другую, знает, какой квант нужно ему испускать». И, припомнив схватку в Манчестере, добавил: «Я ему говорил, что это как branching ratio при радиоактивном распаде, но это его не убедило».
Профессор Е. Л. Фейнберг, записавший беседу с Бором, не перевел русским термином это выражение, означающее: «отношение ветвления». Суть же в том, что есть случаи, когда один и тот же радиоактивный элемент распадается двояким способом: доля его атомов испускает бета-лучи — электроны, а другая доля — альфа-частицы — ядра гелия. Ясно, что в результате таких распадов элемент претерпевает совершенно разные превращения. Так, из каждых десяти тысяч атомов радия-С в среднем три атома переживают альфа-распад и превращаются в теллур-210, а 9997 атомов становятся жертвами бета-распада и превращаются в полоний-214… Громадна разница — 3 и 9997. Но в других случаях отношение ветвления, напротив, оказывается близким к единице. Однако дело тут не в числах, а в принципиальной странности происходящего: атому предлагаются на выбор два пути распада — две возможные судьбы. И свое будущее он выбирает сам, ибо, как известно, от внешних физических условий течение радиоактивных превращений не зависит. И всякий раз атом как бы «заранее решает», что испустить — альфа-частицу или электрон?
Сходство с квантовыми скачками было тут действительно полным. Однако разве это выручало мысль из беды? Необъяснимое разъяснялось необъясненным! И конечно, такая ссылка на двойной распад ни в чем не могла убедить Резерфорда. На что же рассчитывал молодой Бор, приводя в споре столь бесполезный аргумент?
А других у него ие было, да и быть еще не могло. Когда в природе открывается нечто принципиально новое, не вытекающее из прежних представлений о естественном ходе вещей, оно, это новое, логически незащитимо. Его единственный оплот — физические факты, существующие вопреки своей абсурдности. Новые идеи узаконивают абсурд. И на абсурдных примерах держатся. Для самого Бора ссылка на двойной распад только это и означала: вот еще один пример тех же странностей! А в споре с Резерфордом этот пример был особенно хорош: крупнейшему знатоку радиоактивности двойной распад наверняка должен был представляться чем-то естественным и законным, потому что он с ним свыкся. Можно было ожидать, что тогда и «свобода выбора» квантовых скачков не покажется Резерфорду антифизическим вымыслом. Аргумент Бора должен был сыграть миротворческую роль.
Но Резерфорд вовсе и не собирался враждовать со странностями теории Бора: если бы он не испытывал к ней доверия, он не постеснялся бы сказать об этом датчанину напрямик. В том же 1913 году Эйнштейн сказал по поводу боровских идей: «…если это правильно, это означает конец физики как науки». Резерфорд так не думал. Он хотел лишь ясности и убедительности. Его замечание прозвучало не как возражение, а как недоумение. Позднее Бор писал в своих воспоминаниях, что это недоумение было «очень дальновидным, ибо коснулось той проблемы, которой предстояло стать центральным пунктом последующих продолжительных дискуссий». Продолжительных! Это сказано было слишком скромно. И сегодня, через полвека с лишним, длятся те же дискуссии. Еще и сегодня раздаются голоса, всерьез повторяющие шутливый довод Эйнштейна против вероятностного истолкования законов микромира: «Я не могу поверить, будто господь бог играет в кости!» Еще и сегодня…
Словом, и сегодня еще длится спор, начавшийся мартовскими вечерами 13-го года в манчестерском доме Резерфорда.
В общем надо признать, что тот разговор о подтексте боровской статьи был, в сущности, первым в истории физики предметным спором о глубинной сути еще не родившейся квантовой механики. Ее основные принципы — Принцип неопределенности и Принцип дополнительности — еще были неведомы самому Бору. И