скорости обтекания корпуса и крен, а общая картина обтекания корпуса и гидродинамические характеристики будут качественно отличаться от бывших при прямолинейном движении или слабых манёврах.
Разделение манёвров на сильные и слабые в ряде случаев позволяет существенно упростить моделирование поведения замкнутой системы в процессе слабого маневрирования без потери качества результатов моделирования. Поскольку выбор меры качества всегда субъективен, то и разделение манёвров на сильные и слабые определяется субъективизмом в оценке качества моделирования и управления. Но, если такое разделение возможно, то слабому манёвру можно подыскать аналогичный ему (в ранее указанном смысле) балансировочный режим.
Для физически однокачественных процессов разделение манёвров на сильные и слабые основано на моделировании в безразмерном времени. Поскольку понятие о времени и его измерение связано с выбором эталонной частоты, то в качестве эталонных частот могут быть взяты и собственные частоты колебаний объектов управления, замкнутых систем, процессов взаимодействия замкнутых систем и окружающей среды. Это приводит к понятию динамических подобных (частично или полностью) объектов, систем и процессов, для которых процессы (балансировочные режимы и манёвры), отнесённые ко времени, основанном на сходственных собственных частотах, в некотором смысле идентичны. Подробно это разсматривает теория подобия, являющаяся разделом многих частных отраслей знания. Сопровождение слова «идентичность» эпитетом «некоторая» обусловлено тем, что подобие может осуществляться на разных физических носителях информационных процессов (управления), на разных уподоблениях друг другу параметров подобных систем.
Уподобление - обезразмеривание, т.е.
Анализ течения подобного моделирующего процесса может протекать в более высокочастотном диапазоне, чем течение реального подобного моделируемого процесса: это даёт возможность заглянуть в будущие варианты развития моделируемого процесса, что является основой решения задач управления вообще и задачи о предсказуемости, в частности. Примеры такого рода моделирования - все аэродинамические и прочностные эксперименты и расчёты в авиации, судостроении и космонавтике. Моделирование высокочастотного процесса в низкочастотном диапазоне позволяет отследить причинно-следственные связи, которые обычно ускользают от наблюдателя при взгляде на скоротечный реальный процесс. Примером такого рода является скоростная и
Понятие сильных и слабых манёвров для подобных объектов и замкнутых систем связано с различением манёвров в безразмерных единицах времени. Подобными могут быть и физически разнокачественные процессы, например, описываемые одной и той же математической моделью. Но для физически однокачественных процессов, отличающихся размерными характеристиками, области реальных параметров сильных и слабых манёвров будут различны. Об этом всегда необходимо помнить имея дело с реальными однокачественными замкнутыми системами, различающимися своими размерными характеристиками.
3.12. Манёвры и теория катастроф
Замкнутая система может иметь один и более устойчивых балансировочных режимов, принадлежащих к счётному или несчётному множеству. Перевод замкнутой системы из одного балансировочного режима в другой - наиболее часто встречающийся вид манёвра. Манёвр, кроме каких-то специфических случаев, имеет смысл, если конечный для него балансировочный режим - устойчивый режим для данной замкнутой системы. В пространстве параметров, описывающих замкнутую систему, манёвр - траектория перехода от одной точки (начальный вектор состояния) к другой точке (конечный вектор состояния). Манёвр - безусловно устойчив, если возмущающее воздействие, возпринимаемое замкнутой системой в его ходе, не выведет траекторию в пространстве параметров из некоего коридора допустимых отклонений от идеальной траектории.
По отношению к манёвру вектор целей - функция времени, т.е. идеальная траектория и хронологический график прохождения контрольных точек на ней. Множество допустимых векторов ошибки - коридор допустимых отклонений от идеальной траектории с учётом отклонений по времени в прохождении контрольных точек на идеальной траектории.
Манёвр может быть и условно устойчивым, то есть замкнутую систему удаётся перевести в конечное состояние с приемлемой точностью, но возмущающие воздействия (в том числе конфликтное управление) в процессе манёвра плохо предсказуемы до его начала; вследствие этого траектория перехода должна корректироваться в ходе манёвра с учётом реальных отклонений. Манёвр может быть завершён при условии, что в течение перехода возмущающие воздействия не превысят компенсационных возможностей замкнутой системы. Это же касается и ситуации конфликтного управления одним объектом со стороны нескольких субъектов.
Примером такого рода условно устойчивого манёвра является любое плавание эпохи парусного флота «из пункта А в пункт Б»: совершить переход - шансы есть, но об аварийности, сроках и маршруте можно говорить только в вероятностном смысле о будущем и в статистическом смысле - о прошлом. Политика также даёт множество примеров такого рода условно устойчивых манёвров.
То есть, безусловно устойчивый манёвр имеет вероятность успешного завершения, обусловленную возмущающими воздействиями на замкнутую систему в его ходе, равную единице, которая однако может быть сведена к нулевой вероятностной предопределённости низкой квалификацией управленцев