целостность. Однако в 1991 году я предложил модель системы элементов, необязательно живых, способных формировать петли отрицательной обратной связи, сохранявшей целостность системы. (См. мою статью: Биота как регулятор и проблема sustainability // ЖВМ и МФ, 1994. Т. 34, N 4). В ее основе лежит постулат о том, что в любом реальном процессе неизбежно присутствуют те или иные случайные факторы. Из него, в частности, следует, что любое множество не может состоять из вполне тождественных элементов. Будем обозначать через X = note 10 множество элементов х , обладающих свойством s . Кроме того, условимся, что с некоторой вероятностью элемент, обладающий свойством s , может порождать и другие элементы. Это позволяет нам переписать (в рамках гипотезы о средних) уравнение (1) в следующей форме. xs (t +nd ) = f (x1 [t +note 11d ,x 2[t +note 12d ,…,t +[n -1}d ) - kxs (t +{n -1}d ). (2) К этому уравнению необходимо добавить еще условие неотрицательности величины xs , о котором мы говорили выше. Уравнение (2) - простейшая интерпретация процесса неточной редупликации. Несмотря на свою простоту, оно описывает ряд замечательных свойств, присущих множеству X = note 13. Прежде всего, оно показывает, что за счет стохастики (неточности воспроизведения) множество элементов Х может превратиться в систему взаимосвязанных элементов, состояние каждого из которых влияет на судьбу остальных. Но это еще, вероятно, не главное. Уравнение (2) показывает, что у множества Х возникают чисто системные свойства, которые не следуют из свойств отдельных элементов. А именно: в системе возникает тенденция сохранения целостности системы. В самом деле, предположим, что в некоторый момент t +nd один из элементов, например xs (t +nd ), в силу уравнения (2) оказался равным нулю, т.е. его смертность превзошла рождаемость. Но в следующий момент времени t +(n +1) уравнение (2), выписанное для этого элемента, будет иметь вид: xs (t +note 14d ) = f (x 1note 15, x 2note 16,…,t +nd ) › 0. (3) Другими словами, за счет неточности редупликации элемент xs , выбывший из системы на предыдущем шаге, снова в ней восстановится. Значит, в системе Х возникла обратная связь, сохраняющая целостность системы - стремление обеспечить существование элементов, сохраняющих свойство s . И возникновение такой обратной связи - специфическое свойство системы, появляющееся в результате действия алгоритмов сборки! И оно невыводимо из свойств элементов xs . Изложенный пример в некоем смысле замыкает картину: ни метаболизм, ни редупликация, ни даже возникновение обратных связей, обеспечивающих стабильность системы, не являются прерогативой только живого вещества. Они всего лишь свойства, необходимые для его функционирования. Но они недостаточны для его идентификации, для определения ЖИЗНИ как феномена, рожденного Универсумом в процессе его эволюции. Из сказанного можно сделать вывод о том, что в настоящее время определение понятия “живое вещество” (включая знаменитое высказывание Энгельса о том, что жизнь есть форма существования белковых тел), удовлетворяющее требованиям рационализма, отсутствует. Тем не менее мы чувствуем и знаем то качественное отличие вещества живого от косного, утверждение которого на поверхности планеты качественно изменило характер ее развития. На ее поверхности возникла сверхтонкая пленка живого вещества, которая, взаимодействуя с энергией космоса, повернула все процессы эволюции в новый канал развития. И это дает мне основание считать возникновение биосферы первой фундаментальной бифуркацией в истории эволюции Земли как небесного тела.

8. Закон Пастера-Кюри

Итак, мы не в состоянии ответить на вопрос о том, что такое ЖИЗНЬ, дать строгое определение этому феномену. Мы знаем только некоторые свойства живого вещества, которые необходимо должны сопровождать его жизнедеятельность. Мы знаем, что оно должно быть способно к метаболизму и редупликации и формировать петли отрицательной обратной связи, обеспечивающие стабильность (сохранение гомеостаза). Однако всеми этими свойствами могут обладать и материальные системы, которые мы никак не можем отнести к живому веществу. Пример тому - системы биологических макромолекул, пример, конечно, исключительный, хотя и очень важный с общемировоззренческих позиций.

Но, оказывается, существуют и более удивительные свойства, которыми должно обладать живое вещество (и даже продукты его жизнедеятельности), свойство, которое позволяет отличать любое неживое вещество от живого. К сожалению, и это свойство тоже только необходимое и обладание им тоже недостаточно, чтобы ответить на вопрос: а что все-таки означает словосочетание “живое вещество”? В начале 40-х годов прошлого века Луи Пастер обнаружил, что любое живое вещество и многие продукты его жизнедеятельности в одном отношении подобны кристаллам: они обладают способностью поляризовать свет. Еще через 30 лет Пьер Кюри объяснил причины этого явления. Оказалось, что атомы и молекулы любого вещества всегда расположены определенным образом: они образуют некоторую структуру. Впрочем, это знали еще и до Кюри. Но именно он установил, что кроме данной структуры атомы и молекулы могут образовать и ее зеркальное отображение, обладающее теми же физико-химическими свойствами. Другими словами, молекулы могут быть правыми и левыми. Но еще раз: по своим химическим свойствам они неразличимы! Обычное косное вещество обладает свойством хиральности: левые и правые молекулы смешаны в нем приблизительно в одинаковой пропорции. Благодаря этому они и не поляризуют свет. А вот живое, как объяснил Кюри, этим свойством не обладает. Вещество может входить (или усваиваться живым организмом) только в том случае, если оно обладает вполне определенным типом симметрии. Так, например, молекулы всех аминокислот в любом организме могут быть только левыми, а сахара - только правыми! Это свойство живого вещества носит название диссимметрии. Благодаря ему оно и поляризует свет.
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату