уровне, оказалось несоответствие между массой видимого вещества и тем, что галактики остаются вместе в кластерах[16], а не разлетаются друг от друга.

Несмотря на то что современная космология объясняет эти явления присутствием скрытой массы, названной «темным веществом» – “dark matter”, существуют некоторые альтернативные теории, например модифицированная ньютоновская Динамика (MOND)[17]. Эти теории ставят под сомнение верность выкладок, лежащих в основе официальной космологии. Так, модель под названием «Лямбда холодное темное вещество» (Lambda Cold Dark Matter) в настоящее время (в 2007 г.) является ведущей теорией и подтверждается фактическими наблюдениями[18].

На более высоком уровне законами гравитации невозможно объяснить, что заставило космологов прийти к выводу, будто Вселенная расширяется, да еще и с ускорением. Ведь согласно законам гравитации Вселенная, наоборот, должна сжиматься, подчиняясь силе притяжения. Существует потребность в новых законах, которые описали бы скрытую энергию, названную «темной энергией» “dark energy”, которая отвечала бы за подобное расширение. (Иногда ее именуют «антигравитацией».)

В настоящее время космологи ведут споры, что представляет собой эта самая скрытая энергия. Некоторые считают, что она есть некая «космическая постоянная» (cosmological constant) или так называемая квинтэссенция (quintessence). Несмотря на то что подобные законы могли бы дать удовлетворительное объяснение упомянутым выше явлениям, они не могут быть проверены ни на каком другом объекте, кроме как на нашей Вселенной, что лишит их статуса универсальных законов ввиду того, что, как мы уже отмечали, Вселенная у нас одна, и поэтому нет возможности выявить закономерность тех или иных явлений для группы подобных объектов.

Мы можем предположить, что имеем дело с миллиардами «мини- вселенных», на которых мы могли бы протестировать законы, регулирующие локальную часть Вселенной, но такая «мини-Вселенная» ни в коей мере не является всей Вселенной. Поэтому и такая уловка не может быть состоятельной. Однако, проверяя мини-вселенные и убеждаясь, что законы физики в них работают одинаково, мы можем подтвердить основной вывод современной космологии, что Вселенная одинакова во всех своих частях и во всех направлениях. Тем не менее, убеждаясь в гомогенности Вселенной, мы не получаем ответа на вопрос, почему она одинакова во всех своих частях и во всех направлениях.

Наконец, концепция статистической вероятности в отношении Вселенной также проблематична, поскольку речь идет о единичном объекте. Проблемы возникают при попытке применить теорию вероятности к космологии в целом, тогда как именно эта концепция и лежит в основе современной космологической аргументации.

Например, мы говорим о низкой вероятности «тонкой настройки» Вселенной (fine tuning), то есть все известные физические константы имеют такие точные параметры, что во Вселенной могут создаваться условия не только для существования такой сложной формы организации материи, как жизнь, но и для существования самих атомов. Если бы эти константы были иными, атомы никогда не смогли бы сформироваться, звезды никогда не зажглись бы, термоядерные реакции в них не были бы возможны, а тем самым не могло бы появиться то разнообразие элементов во Вселенной, которое мы наблюдаем[19].

Таким образом, можно предположить, что если бы константы были иными, мы могли бы исследовать различные вероятности, сравнивая их между собой, но это не имело бы смысла, поскольку не могло бы быть доказано путем астрономических наблюдений. Как же можно говорить о различных вероятностях по отношению к развитию Вселенной, если Вселенная, которую мы можем наблюдать, присутствует только в единственном числе?

Итак, мы не можем научно установить законов возникновения Вселенной с учетом различных начальных условий и различных вероятностей ее развития. Прежде всего, существует разница между экспериментальными науками, такими как физика, химия, микробиология, и «историческими», «географическими» науками, каковыми, например, являются астрономия, геология, теория эволюции. Говоря о научном подходе, мы обычно имеем в виду экспериментальные науки. Наблюдая и проводя эксперименты над классом идентичных или почти идентичных объектов, мы пытаемся установить закономерности в их поведении и убедиться в их идентичности. Например, кварки[20], протоны, электроны совершенно идентичны между собой и ведут себя совершенно одинаково (именно это свойство легло в основу хорошо протестированной квантовой статистики). Каждая молекула ДНК похожа на другую молекулу, хоть и отличается от нее. Все лягушки похожи друг на друга. То же можно сказать и о людях. Мы все достаточно похожи друг на друга, чтобы применять к нам законы, построенные на соответствующих общих характеристиках. Если бы это было не так, было бы ошибочно относить перечисленные виды к одним и тем же классам объектов. Молекулы воды, газы, жидкости, твердые вещества практически одинаковы по своим свойствам, и их можно описывать общими для них физическими и химическими законами. Что же касается географических и исторических наук, в них существуют уникальные объекты – Большой Каньон, континент Антарктида, Солнечная система, галактика Андромеда или уникальные события – образование Солнечной системы, эволюция жизни на Земле, взрыв определенной сверхновой звезды. Поскольку эти уникальные объекты и события доступны только для обозрения, а не для экспериментирования, особые начальные условия, которые привели к возникновению этих объектов и событий, не могут быть изменены. Между тем существуют целые классы подобных объектов (другие каньоны, континенты, солнечные системы, галактики и т. д.), которые мы можем наблюдать и сравнивать. В отличие от космологии, в других науках мы можем проводить статистический анализ с целью выявления закономерностей.

Но если в космологии мы действительно не можем проводить подобный анализ, то необходимо задать вполне законный вопрос о природе космологии как науки. Мы должны либо допустить, что физические феномены на большой шкале космических расстояний (такие, как зарождение Вселенной) происходят только один раз, и именно они и являются предметом изучения космологии, либо, наоборот, предположить, что подобные события не уникальны, даже если мы не можем их наблюдать, и тогда эти события находятся вне сферы интересов космологии, поскольку ее методы не приспособлены для изучения классов объектов.

Некоторые ученые пытаются обойти эти проблемы, отрицая уникальность Вселенной. Они предполагают наличие множества вселенных (many universes), что само по себе противоречит общепринятому определению Вселенной как вместилища всего сущего. Так или иначе, принимая предположение о существовании множества вселенных, мы можем применять концепции статистических вероятностей к этим гипотетическим объектам, рассматривая их как чрезвычайно удаленные области пространства с различными характеристиками, как в теории хаотических инфляций (chaotic inflation), или как совершенно разделенные вселенные без какой-либо физической связи между ними. В обоих случаях степень спекулятивности выходит далеко за рамки допустимого в науке.

Поскольку до сих пор не доказано, что другие вселенные существуют или, по крайней мере, могут существовать, мы должны оставаться на позициях, что наша Вселенная уникальна, по крайней мере с нашей точки зрения, и, таким образом, нам придется согласиться с философскими последствиями такого утверждения.

Глава 5

Вселенная в пространстве и времени на большой шкале

Проблемы, возникающие из признания уникальности Вселенной, осложняются ее огромными размерами и протяженностью в пространстве и времени. Именно это составляет серьезное препятствие на пути ее изучения и ставит космологию в незавидное положение. Таким образом, помимо наблюдений и теоретических выкладок возникает необходимость в разработке рабочих моделей, позволяющих поддержать теоретические выкладки и позволить верно предвидеть результаты будущих наблюдений с достаточной степенью точности.

Для того чтобы понять, в чем заключается проблемы наблюдения Вселенной на большой шкале, давайте проанализируем расстояния, с которыми мы имеем дело.

Так, расстояние до ближайшей крупной галактики Андромеды таково, что свету требуется около двух миллионов лет, чтобы долететь от нее до Земли, и это при том, что скорость света – триста тысяч километров в секунду.

В настоящее время размеры наблюдаемой Вселенной примерно в пять

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату