Берне место 'технического эксперта'. Он должен был проверять патентные заявки ' выписывать свидетельства. Работа в качестве 'патентованного батрака', как он шутливо говорил, гарантировала ему средства к жизни 'а многие годы. Одновременно она побуждала его к размышлениям над физико- техническими проблемами, к которым у него всегда была живая склонность. Еще и в берлинские годы Эйнштейн занимался мелкими изобретениями и охотно мастерил приборы.
Работа оставляла ему достаточно времени для научных размышлений. Эйнштейн являл собою тип мыслящего исследователя. Он мало читал, но много думал. В 'счастливые бернские годы', как он их сам называл, он, однако, планомерно знакомился с произведениями преимущественно гносеологического содержания. По предложению студента-философа Мориса Соловина был основан философский кружок, членами которого, кроме Соловина, стали Эйнштейн и математик Конрад Габихт. Друзья назвали его гордо я иронично 'Академия Олимпия'.
Письма, которые Эйнштейн на протяжении всей своей жизни писал Соловину и которые были опубликованы в факсимильной репродукции, принадлежат к прекраснейшим эйнштейновским документам. Во введении Соловин перечислил книги, которые были совместно прочитаны тремя 'академиками'. Это были сочинения Пирсона, Маха, Юма, Спинозы, Джона Стюарта Милля, Рихарда Авенариуса, Ампера, Гельмгольца, Римана, Дедекинда, Пуанкаре и других. По прочтении половины страницы, иногда даже одной фразы нередко начинались многодневные дискуссии. Понятия субстанции и причины у Юма 'академики' обсуждали несколько недель. На повестке дня заседаний были также выдающиеся произведения художественной литературы, среди них 'Дон Кихот' Сервантеса. Для разнообразия Эйнштейн играл на скрипке.
Глубокое изучение трудов, которые большей частью не могут быть причислены к материалистическому направлению, пробудило или усилило определенные идеалистические черты во взглядах Эйнштейна, сохранившиеся и в более поздние годы. Тем не менее эти занятия с целью самосовершенствования послужили для ученого своеобразной тренировкой, способствовали успеху исследований, результаты которых были представлены научной общественности в 1905 году. В этом же году 'Академия Олимпия' после трехлетнего существования прекратила свою деятельность, так как Габихт и Соловин покинули Берн.
Вскоре после этого Эйнштейн выступил с тремя большими группами теоретических открытий, которые привели к новому взгляду на природу и обогатили сокровищницу достижений физики.
Первыми по времени им были начаты исследования в области молекулярной физики, прежде всего кинетической теории теплоты. В 1905 году Эйнштейн впервые дал полное и законченное толкование колебательного явления, которое, собственно, было давно известно, но не получило еще математического оформления.
Речь шла о том беспорядочном зигзагообразном движении мельчайших взвешенных частиц, которое в 1827 году заметил английский ботаник Роберт Броун, наблюдая цветочную пыльцу под микроскопам. В его честь оно было названо броуновским движением. Физика рассматривала его как следствие термически обусловленных беспорядочных толчков, испытываемых видимыми под микроскопом частицами со стороны невидимых молекул.
Не зная предшествующих исследовательских работ, Эйнштейн путем теоретических размышлений пришел к точному математическому изображению взаимозависимости, существующей между скоростью движения частиц, их величиной и вязкостью применяемой жидкой среды. Предложенный им новый метод определения размеров молекул и его формула давали возможность непосредственно считать молекулы.
Отправным пунктом для выводов Эйнштейна послужили результаты исследований польского физика Смолуховского, поддержавшего статистическим толкованием броуновского движения предложенную Больцманом кинетическую теорию атома.
'Эйнштейновский закон броуновского движения', как его обычно сегодня называют, уже через три года, в 1908 году, был убедительно подтвержден блестящими опытами французского физика-экспериментатора Жана Перрена, который позднее получил за эту работу Нобелевскую премию. Главным образом благодаря этим открытиям Вильгельм Оствальд, один из упорнейших противников теории атома, был наконец 'обращен в атомизм', как он писал в своем дневнике осенью 1908 года.
Великий атомист Людвиг Больцман не был свидетелем этого и последующих триумфов атомной теории. В 1906 году он в припадке отчаяния покончил жизнь самоубийством. Он был убежден, что отстаиваемое им учение об атомах завоюет признание только в отдаленном будущем.
Вкладу Эйнштейна в молекулярную физику при оценке достижений этого необычайно многостороннего исследователя часто уделяется слишком мало внимания. Однако его значительность позволила Максу Борну сказать, что Эйнштейн, самостоятельно разрабатывая вопрос, заново открыл все основные направления статистической механики.
Исследования Эйнштейна по кинетической теории теплоты важны также в философском отношении. Со времен Демокрита, Эпикура и Лукреция атомизм так тесно связан с материалистическим пониманием природы, что каждое подтверждение атомистических представлений, как правило, служило укреплению позиций философского материализма. Результаты исследований Эйнштейна в молекулярной физике также способствовали подтверждению материалистического взгляда на природу.
Важное значение имеет предисловие Эйнштейна к предпринятому Германом Дильсом изданию знаменитого материалистического трактата в стихах 'О природе вещей' Лукреция. Эйнштейн высоко оценил гносеологическое и этическое значения материалистических воззрений римского поэта-философа. Он отметил стремление Лукреция освободить людей от рабского страха, который порождался религией и суевериями и использовался церковниками для своих целей.
Второй большой комплекс исследований, с которыми Эйнштейн вступал в научную жизнь, непосредственно связан с квантовой гипотезой Планка ' основывается на ней. К этому времени прошло уже почти пять лет с момента открытия элементарного кванта действия, однако физики почти не уделяли ему внимания и не оценили этого открытия или не сделали выводов из него.
Планк относил свою квантовую формулу только к рассматриваемым им законам теплового излучения 'черного тела'. Эйнштейн предположил, что здесь речь идет о естественной закономерности всеобщего характера. В элементарном кванте действия h Эйнштейн видел свойство света. Не оглядываясь на господствующие в оптике взгляды, он применил гипотезу Планка к свету, придя к выводу, что следует признать корпускулярную структуру света.
Квантовая теория света, или фотонная теория Эйнштейна, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление, что вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, по образному выражению Эйнштейна, как бы в форме 'горошин'.
Поэтому свет имеет прерывную, 'горошинообразную' структуру. Он может рассматриваться как поток самостоятельно существующих и самостоятельно действующих неделимых энергетических зерен, световых квантов, или фотонов. Их энергия определяется элементарным квантом действия Планка и соответствующим числом колебаний. Свет различной окраски состоит из световых квантов различной энергии, то есть, если говорить образно, световых 'горошин' различной величины и массы.
Эта теория Эйнштейна, развитая им с наглядностью, напоминающей о Фарадее, была с точки зрения философии антитезой взглядам на оптику Гюйгенса и Френеля. В результате стал возможным блестящий диалектический синтез волновой теории света и корпускулярной теории света Ньютона на новой, более высокой ступени естественнонаучного познания.
Эйнштейновское представление о световых квантах помогло понять и наглядно представить - по аналогии с разрывом снаряда - законы фотоэффекта, который впервые наблюдал Герц и который подробнее исследовали Галлвакс и Ленард. Поскольку коротковолновый, ультрафиолетовый свет состоит из богатых энергией световых квантов - образно говоря, из больших и тяжелых световых горошин, - то электроны, вырванные из поверхности металла под воздействием этих световых квантов, должны двигаться с гораздо большей скоростью, чем при длинноволновом свете, который состоит из световых квантов, менее богатых энергией, - из мелких и легких световых горошин. Правильность такого толкования фотоэлектрического эффекта (за эту работу Эйнштейн в 1922 году получил Нобелевскую премию по физике) через десять лет получила подтверждение в экспериментах американского физика Милликена. Открытое в 1923 году другим физиком из США, Комптоном, и названное в его честь явление, которое отмечается при воздействии очень