можно попросить юношей отойти в одну сторону, а девушек в другую и заняться подсчётом как тех, так и других. Но нас не интересует, сколько здесь юношей и девушек, а интересует лишь, поровну ли их. Попросим оркестр сыграть какой-нибудь танец. Тогда юноши пригласят девушек, и наша задача будет решена. Ведь если вся молодёжь разбилась на танцующие пары, то ясно, что на площадке ровно столько же юношей, сколько и девушек».

Кантор решил таким же способом сравнить и бесконечные множества.

Для этого вовсе не обязательно пересчитывать их по элементам. Достаточно установить взаимно однозначное соответствие между элементами обеих множеств. Так вот, все бесконечные множества, элементам которых можно сопоставить числа натурального ряда, называются счётными. Например, множество всех рациональных чисел (целых и дробных).

Теперь естественно ожидать, будто все без исключения бесконечные множества счётны. Нет! Кантор с удивлением открыл и убедительно доказал, что множество всех действительных чисел или точек (рациональных и иррациональных, вместе взятых) неисчислимо. Оно несравненно богаче элементами (обладает большей мощностью), нежели множество одних рациональных точек.

Доказать, что множество счётно, значит придумать правило, по которому нумеруются его элементы. Убедиться же в несчётности того или иного множества — это значит доказать, что такого правила нет и не может быть вообще.

Кантор рассуждал так. Допустим, нам удалось найти способ, как перенумеровать все действительные числа, выписав их в виде последовательности. Если теперь найдётся хотя бы одно число, не входящее в эту последовательность, значит гипотеза о возможности перенумеровать все действительные числа несостоятельна. И Кантор продемонстрировал такое число! Да не одно, а бесчисленное их множество. И какое бы правило нумерации мы ни придумали, всегда найдётся незанумерованный элемент этого множества. Вот какой смысл вкладывается в слова «множество всех точек континуума неисчислимо».

Вот и получается, что у геометрического целого (линии) может появиться совершенно новое качество, отсутствовавшее у его частей — непротяженных, не имеющих размеров точек, когда мощность множества переходит определённый количественный Рубикон. Вспомните линию, составленную из одних рациональных точек! Это множество всюду плотно. Если мы прибегаем к чертежу, то нам и впрямь придётся рисовать сплошную линию — иначе не изобразишь множество всех рациональных точек. Но нет, эта линия разрывна. И разрывна в каждой точке! Лишь континуум обладает непрерывностью, сплошностью. Этого, разумеется, не дано было знать Зенону, для которого все точки-нули, равно как и все бесконечности, выглядели «на одно лицо».

И всё же, даже разобравшись в этих премудростях, математики XX века не смогли окончательно отделаться от кошмара зеноновских противоречий, Канторова теория множеств, которая, как считалось, обезвредила апории Зенона, сама оказалась подорванной изнутри таившимися в ней противоречиями.

У английского писателя Лоуренса Стерна есть роман «Жизнь и мнения Тристрама Шенди, джентльмена». Это весьма своеобычный роман. Повествование ведётся от первого лица, причём герою понадобилось целых двести пятьдесят страниц, чтобы описать своё появление на свет. Лишь в третьей книге мать Шенди разрешается от бремени Тристрамом, джентльменом, а в шестой маленький джентльмен впервые удостаивается чести быть облачённым в штаны.

О странном литературном персонаже вспоминает не кто иной, как Бертран Рассел. Предположим, говорит английский учёный, какой-нибудь новоявленный Тристрам Шенди будет затрачивать по году на описание каждого дня своей жизни. Сумеет ли он накропать мемуары?

Не сумеет, это ясно: человек смертен. А если бы Тристрам Шенди стал вдруг бессмертным? Что тогда? Тогда каждый день найдёт своё отражение в его необычной летописи. Другое дело — странное жизнеописание никогда не закончится. Но каждому дню найдётся соответствующий год, причём количество дней и количество годов в их нескончаемой череде равны, вернее, равномощны. Это бесконечности одного класса. Точно так же последовательность всех чётных чисел равномощна натуральному ряду, включающему и чётные и нечётные числа: 1, 2, 3, 4, 5, 6 и так далее. А натуральный ряд равномощен множеству всех рациональных чисел.

Как видно, правило «целое не равно своей части» утрачивает силу в странном мире бесконечного. А вот и другой вывод, ещё пуще насмехающийся над немощью человеческой интуиции.

Мы уже выяснили: континуум (совокупность всех без исключения точек отрезка) обладает гораздо большей мощностью, нежели редко стоящие на числовой оси метки натурального ряда или даже множество всех рациональных точек, плотное везде. Тем не менее совершенно неожиданным и поистине ошеломляющим выглядит такой Канторов итог: один ли ангстрем, один ли световой год содержат одинаковое «количество» (речь идёт о бесконечном множестве) точек. Уму непостижимо, но бесконечная прямая вмещает не больше точек, чем конечный отрезок! И ещё один сюрприз: трёхмерная фигура (скажем, куб) не богаче точками, чем двумерная (квадрат), а двумерная поверхность — чем просто линия. Целых три года (с 1871 по 1874) Кантор пытался доказать, что взаимно однозначное соответствие между точками отрезка и точками квадрата невозможно. Мучительные поиски долго оставались безуспешными. И вдруг совершенно неожиданно для себя учёный пришёл к совершенно противоположному результату! Он проделал то самое построение, которое считал неосуществимым. Потрясённый своим открытием, он написал математику Дедекинду: «Я вижу это, но не верю этому». А вскоре убедился, что не только квадрат, но и куб равномощен линии…

Этого не знал Зенон. Ньютон тоже. Но это со всей непреложностью доказал Георг Кантор — человек, впервые отважившийся объять необъятное, сосчитать неисчислимое, измерить неизмеримое. Он проник с числом и мерой в таинственный и странный мир, над входом в который красуется кабалистический символ бесконечности — oo, и который исстари вселял в души человеческие мистический хоррор инфинити — ужас перед бесконечным.

Беспрецедентное арифметическое беззаконие потрясло математиков. Но это было ещё только началом. Теория множеств Кантора оказалась чреватой куда более серьёзными парадоксами.

На рубеже XIX и XX столетий выяснилось, что логические рассуждения, которыми оперировал Кантор, ведут к неразрешимым противоречиям. Первый нокаут канторовские построения получили от итальянского учёного Бурали-Форти, сформулировавшего парадокс наибольшего порядкового числа. Однако настоящей сенсацией оказалась знаменитая антиномия Рассела, опубликованная в 1903 году и получившая широкую известность под названием «парадокса брадобрея».

Солдату приказали стать полковым цирюльником. Приказ строжайше предписывал брить тех и только тех, кто не бреется сам. За невыполнение — смертная казнь. Солдат исправно нёс нехитрую службу парикмахера ровно один день. На следующее утро, проведя ладонью по подбородку, он взялся за лезвие и кисточку, чтобы придать своим щекам былой глянец, но… вовремя спохватился. Начни он скоблить собственную щетину, быть ему в числе тех, кто бреется сам. И тогда он в соответствии с грозным распоряжением начальства не должен себя брить. Если же он откажется себя брить, то станет одним из тех, кто сам не бреется и кого как раз он-то и обязан брить! Как же поступить бедняге брадобрею?!

Разумеется, перед нами шутливое иносказание настоящего парадокса. На самом деле формулировка его более строга.

Существуют множества, которые могут содержать сами себя в качестве элемента. Назовём их необыкновенными. Вчитайтесь, к примеру, в такое определение: «Множество А включает в себя все множества, которые можно определить предложением, содержащим меньше двадцати слов». Только что приведённая фраза содержит всего 15 слов. Значит, само множество А тоже является элементом множества А! Разумеется, перед нами курьёзное исключение. Большинство совокупностей обыкновении — не содержат себя в качестве элемента. Давайте пока ограничимся только такими пай-множествами, которые вроде бы не сулят никакого подвоха. И рассмотрим множество всех обыкновенных множеств. Обозначим его буквой М. Предлагается ответить: само М — обыкновенное или необыкновенное? Бесспорно, оно должно быть либо тем, либо другим — третьего не дано. Допустим, что М — обыкновенное множество. Тогда оно должно содержать себя в качестве, элемента: ведь М, по определению, множество всех до единого обыкновенных множеств. — Но если оно включает самое себя, значит, перед нами необыкновенное множество! Ладно, пусть будет таковым. Стоп… Что же получилось: необыкновенное М входит в множество всех обыкновенных множеств? Но ведь мы же договорились вообще не иметь дела с необыкновенными множествами! М, по определению, не имеет права входить в множество всех и одних только обыкновенных множеств! А уж если

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату