7

Понятно, что ключом к следующим воротам, или толчком для очередного (кто знает, не решающего ли) шага, будет вопрос о том, откуда берутся задачи, поставленные в Природе, которые достаются нуклеотидам? Гамильтоновы методы и графы не имеют ведь НИЧЕГО общего с жизненными процессами. Это похоже на то, как если бы мы продемонстрировали мощность, дремлющую в некоем вычислительном устройстве, причем в таком «устройстве», которое ничем не напоминает компьютер нашего производства. Биохимик скажет: гидролиз одной молекулы трифосфата аденозина требует столько энергии, что одного джоуля хватит на 2 ? 1019 операций.

Это поразительная эффективность, если учесть, что второй закон термодинамики допускает теоретический максимум в 34 ? 1019 операций на 1 джоуль (при 300° по Кельвину). Зато самые лучшие наши компьютеры могут выполнить самое большее 109 операций на 1 джоуль. Как видно, процессы, какими энергетически питаются нуклеотидные «устройства», несравненно более эффективны по сравнению с нашими техническими творениями. Тем самым можно было бы признать, что мои попытки, содержащиеся в «Сумме технологии», убеждения и уверения, что мы позаимствуем силу Природы НЕ через имитацию центральных нервных систем, НЕ через создание «искусственного мозга», а посредством овладения силами, скрытыми в геномах, имели, в общем, смысл. Возможно, как пишет Адельман, что одна молекула ДНК может соответствовать «моментальному» (instantaneous) образу машины Тьюринга и что находящиеся в нашем распоряжении энзимы и протокоды могут быть использованы для приведения в движение ТАКИХ «МАШИН». Исследования, ведущиеся в этом направлении, могут привести к развитию энзимов, способных выполнять работу проектного синтеза: это будет эра манипулирования макромолекулами, о которой я писал в 1980 году в «Прогнозе развития биологии до 2060 года» для Польской Академии наук. В конце концов, пишет Адельман, «можно себе представить возникновение универсального функционального компьютера, созданного только из одной макромолекулы, подключенной к группе энзимов (подобных рибосомам), которые будут на эту макромолекулу „соответствующим образом“ воздействовать».

8

Признаюсь, что, когда я читаю такие вещи в работах, абсолютно не претендующих на принадлежность к Science Fiction, и когда я оглядываюсь в прошлое на то, что писал, и что, бывало, принимали за утопические сказки, чувствую не столько даже удовлетворение, сколько изумление, полное тревоги. Потому что одно дело сказать, что где-то там, когда-то, «за вершинами столетий» будет создано нечто, что какие-то Силы будут высвобождены и станут подвластны людям, и при этом успокоиться верой в улучшение человеческой природы (в ходе «прогресса цивилизации»), а другое дело — реально дожить до таких времен, как в процитированных публикациях, и видеть, что уже за порогом приближающегося XXI века начнется вторжение огромных капиталов, массивных инвестиций, рыночной борьбы и безумий в битвах за эти «биокомпьютеры», о которых я так беззаботно писал, не получая при этом ни малейшего отзыва (кроме смеха).

9

Чтобы меня еще больше добить (или наоборот увенчать?), в декабрьском номере журнала «Scientific American» помещена статья о возникающей проектной генной инженерии, которая должна создать новый фронт борьбы с болезнетворными микроорганизмами. Однако об этом я уже не хочу здесь писать. Мысленно я скорее вернусь в более далекое прошлое, в котором простейшая, еще не клеточная, а, пожалуй, бактерийная жизнь размножалась и кипела на поверхности нашей планеты. Сможем ли мы когда-нибудь сымитировать процессы такого масштаба и такого диапазона? В принципе мне кажется это до определенной степени возможным. Вопрос, на который я не пытался до сих пор найти хотя бы и приблизительный ответ: ЧТО ставит вычислительной мощности, возникающей в ходе генезиса нуклеотидного кода, ЗАДАЧИ? Этот вопрос с виду является одновременно и простым, и необычайно сложным. Естественно, должно было быть так, что задача «родилась сама» в том элементарном смысле, что «молекулярные компьютеры» только тогда могли бы сохраниться, если бы были так сориентированы процессуально, чтобы они сами себя смогли продолжать. И это потому, что там, где возник этот молох, эта молекулярная армия, созданная из триллионов упорядоченных нуклеиновых кислот, одновременно при температуре Праземли существовал хаос броуновского движения: там постоянно продолжались взаимодействия атомного беспорядка, продиктованные вторым законом термодинамики, там должны были проходить битвы с возрастанием энтропии. А то, что проигрывало в этих столкновениях, переставало существовать. И исходя из этого, мы уже начинаем понимать, как это может быть, что бактерии после относительно коротких триумфов медицины, бомбардирующей их антибиотиками, приобретают устойчивость. Задача для этих микроорганизмов все время одна и та же, что и в течение четырех миллиардов лет: надо выжить! «Надо» уже в том смысле, в каком «надо» надеяться на встречу Земли с метеоритом или же ждать изменений климата, поскольку как биогенез был явлением, ВЕРОЯТНОСТНО обусловленным, так вероятности определяют и частоту космических воздействий в виде столкновений с метеоритом или вступлением в ледниковый период. Было время, когда теория вероятностей считалась бедным родственником, просто подкидышем, который был гнусно подброшен математике исследователями азартных игр. Сегодня же теория вероятностей в почете, и мы понемногу начинаем узнавать, какую роль вероятность сыграла при зарождении жизни на Земле… и придала этой жизни в ее простейших бактерийных формах такую устойчивость, благодаря которой из каждого найденного медициной препятствия эта жизнь выйдет невредимой… что вынудит нас к продолжению битвы с болезнями.

10

При всем том, когда уже перед нами откроется необыкновенно удивительная панорама будущих работ, тех, которые я почти маниакально снабдил лозунгом «догнать и перегнать Природу в ее точности», следует также учесть, что простая добросовестность и деловитость по-прежнему должны нас обязывать, и это значит, что опасения, которые я выразил в «Сумме технологии» (в примечаниях к ней), остаются в силе. В частности, я задумывался над тем, сможем ли мы и каким образом найти наиболее КОРОТКИЕ пути, первые в нашей истории, к реализации провозглашенного лозунга.

Ведь если бы дело обстояло так, что три миллиарда лет назад возникла бы жизнь, а затем в течение трех миллиардов лет она бы самоповторялась в пермутациях и рекомбинациях, не меняя собственной формы, то как, собственно, могло потом, почти внезапно, дойти до «кембрийского прыжка», который освободил жизнь, развивая ее многоклеточно, который заселил океаны, а затем — материки, откуда «молекулярно расчлененный молох нуклеотидного кода» нашел способ создания себе дальнейших задач, основанных на самоусложнении жизни, на расширении на виды, откуда в один момент возник этот путь акселерации, ускорения, благодаря которому однажды возникшие организмы лихорадочно занялись производством новых видов? Вместе с тем мы знаем, что из всех этих видов растений и животных, которые возникли в прошлом, 99 % погибло, и только чрезвычайная живучесть… снова надо говорить просто: ВЫЧИСЛИТЕЛЬНАЯ, рекомбинирующая, рекомбинируемая, из нуклеотидных кирпичиков сумела собрать дальнейшие мириады последующих видов, целые фонтаны разновидностей… Или это все было «выигрышем

Вы читаете Молох (сборник)
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату