то есть действуют по принципу «более или менее», даже если общая формальная теория такого познавания отсутствует. Мы имеем в виду перцептроны.

Перцептроны[54] – это системы, снабженные «зрительным рецептором», который представляет собой грубый аналог сетчатки глаза, а также псевдонейронными элементами, соединенными случайным («лотерейным») способом. Перцептроны приобретают способность распознавать образы (простые плоские конфигурации, например цифры или буквы) в процессе обучения, который идет по довольно простому алгоритму. Создаваемые сейчас перцептроны все еще примитивны и распознавать, например, человеческие лица пока не могут, как не могут, конечно, и «читать тексты», но они уже представляют собой заметный шаг на пути к созданию машин, способных такие тексты читать. Это неслыханно упростит все процедуры, предваряющие ввод в цифровую машину информации о поставленной задаче: ведь сейчас каждую такую задачу нужно сначала перевести на язык машины, а эта – не автоматизированная – процедура поглощает много времени у обслуживающего персонала. Поэтому конструирование все более сложных и все более «способных» перцептронов представляется весьма многообещающим. Это не означает, что перцептрон как модель мозга «точнее» цифровой машины (тем более что работу перцептрона можно моделировать на цифровой машине); нельзя утверждать также, что перцептрон «более похож» на мозг, чем такая машина. Каждое из этих устройств моделирует в своей узкой области определенные элементарные аспекты деятельности мозга – и это все. Быть может, будущие перцептроны подведут нас ближе к пониманию «интуиции». Нужно добавить, что в литературе по этому вопросу существует определенная путаница в терминах или неясность в понятиях. Некоторые называют «эвристическое поведение» «неалгоритмичным». Но подобное определение зависит от того, считаем ли мы, что алгоритм – это полностью детерминированный распорядок действий, не меняющийся в процессе реализации, или что это такой распорядок, который благодаря преобразующим его обратным связям в процессе работы сам переходит в форму, отличную от исходной. В определенных случаях можно было бы говорить здесь о «самопрограммировании», что также вносит некоторую путаницу, поскольку это понятие применяют к самым разным типам поведения. В классических цифровых машинах программа четко отделена от реализующих ее рабочих устройств, а в мозгу такое отчетливое разделение имеется не всегда. С той минуты, когда поведение сложной системы становится «пластичным», иначе говоря, когда его детерминизм оказывается лишь условным, вероятностным, когда оно перестает быть прямолинейной реализацией жестких, раз навсегда установленных «предписаний», понятие алгоритма уже нельзя применять в том виде, в каком оно заимствовано прямо из дедуктивных наук. Ведь и в этом случае можно диктовать детерминированное поведение, но лишь до определенной границы. Например, после некоторого числа шагов сообщить системе, что ей следует начать «свободный поиск» очередного шага в диапазоне всего множества альтернатив; после чего она начнет действовать методом «проб и ошибок», пока не нащупает «оптимальное» значение, например минимум или максимум какой-либо функции, и тогда вновь на какое-то время включится «жесткий» распорядок действий. Но возможен также и случай, когда весь алгоритм является в определенном смысле слова «равномерно» вероятностным, то есть никакой из очередных шагов не предписывается системе «аподиктически», ей даются лишь некоторые пределы, границы допустимых областей, где могут включаться либо алгоритмы иного характера («локально детерминированные»), либо операции типа «сопоставления» в целях поиска сходства (вроде «распознавания образов» или «форм»). Можно при этом комбинировать известные операции типа «априорно заданного» управления, «поиска», «сравнения» и, наконец, «индукции». Здесь при решении вопроса, с чем же мы имеем дело – с «алгоритмом» или с «эвристикой», основанной на «интуиции», – заметную роль играет уже просто соглашение (похожее на соглашение, что вирус в кристаллической форме «неживой», а вирус, внедрившийся в бактериальную клетку, «живой»).

2. Как же могут теперь выглядеть попытки ответа на вопрос, способны ли результаты «машинного мышления» превзойти уровень интеллектуальных возможностей человека? По-видимому, следует перечислить возможные ответы. При этом мы не знаем, исчерпаны ли все возможные варианты, так же как не знаем, какой из них истинен.

А. Машинное мышление по некоторым принципиальным причинам не может превысить «потолок человеческого интеллекта». Например, потому, что никакая система не может быть «разумнее» человека; мы сами уже достигли потолка, но просто не знаем об этом. Либо потому, что к мыслящим системам типа «человек» ведет единственный путь – путь естественной эволюции, который можно в лучшем случае «пройти вновь», используя как экспериментальный полигон всю планету; либо, наконец, потому, что небелковые системы в интеллектуальном отношении (то есть как преобразователи информации) всегда хуже белковых и т.п.

Все это звучит весьма неправдоподобно, хотя исключить такую возможность пока нельзя. Я говорю это, опираясь на эвристику, которая подсказывает, что человек как разумное существо вполне зауряден, коль скоро его сформировал отбор по сравнительно малому числу параметров на протяжении всего лишь миллиона лет; что могут существовать и более «разумные» существа; что процессы Природы воспроизводимы и что к тем состояниям, к которым Природа пришла одной цепочкой шагов, можно прийти и другими путями.

Б. Машинное мышление способно превзойти человеческий интеллектуальный потолок, подобно тому как учитель математики «умнее», чем его ученики. Но так как человек способен понимать то, к чему не может прийти самостоятельно (например, дети понимают евклидову геометрию, хотя и не придумывают ее сами), то человеческому интеллекту не грозит потеря контроля над «познавательной стратегией машин»; он всегда будет понимать, что они делают, как они это делают и почему делают. Эта позиция также представляется мне неприемлемой.

Собственно говоря, что означает фраза: «Машинное мышление способно превзойти интеллектуальный потолок человека»? Неправильно понимать это превосходство как превосходство учителя над учениками; это ложное понимание – ведь учитель тоже не создал геометрии. Речь идет об отношении творцов науки ко всем остальным людям – вот что является аналогом отношения «машина – человек». А это значит, что машины могут создавать теории, то есть выделять инварианты тех или иных классов явлений в более широком диапазоне, чем человек. «Усилитель интеллекта» Эшби [55], в его первоначальном замысле, не заменил бы ученого, ибо этот усилитель – простой селектор информации, тогда как труд ученого к отбору несводим. Разумеется, машина Эшби могла бы охватить в качестве элементов выбора значительно большее число альтернатив, чем на это способен человек. Это устройство вполне реально и полезно, если мы остановились на распутье и должны избрать дальнейшую дорогу. Оно оказывается бесполезным, если нам лишь предстоит догадаться, что какой-то путь вообще существует, например путь «квантования процессов». Поэтому такой усилитель нельзя считать и первым приближением к машине, автоматизирующей творческий труд ученого. Пока что мы не в состоянии начертить хотя бы приближенный эскиз того, что нам нужно. Однако мы знаем, по крайней мере в грубых чертах, что должна уметь такая «гностическая» машина: для создания теории сложных систем она должна учитывать огромное количество параметров – такое количество, с которым алгоритмы современной науки справиться не могут.

В физике отдельные уровни явлений можно рассматривать изолированно (атомная физика, ядерная физика, физика твердого тела, механика). В социологии это невозможно: различные уровни (сингулярно- единичный, плюрально-массовый) попеременно оказываются ведущими, то есть определяют динамическую траекторию системы. Основное препятствие как раз в количестве переменных, подлежащих учету. «Гностическая» машина, способная создать «теорию общественной системы»[56], должна была бы принять во внимание очень большое число переменных и этим отличалась бы от известных нам физических формализмов. Итак, на выходе «гностического творца» мы получаем теорию, закодированную, скажем, в виде целой системы уравнений. Смогут ли люди как-либо подступиться к этим уравнениям?

Создавшуюся ситуацию, может быть, легче понять на примере, почерпнутом из биологии. Если информационная емкость яйцеклетки совпадает с количеством информации, содержащейся в энциклопедии, и если заполнить расшифровкой генотипа тома энциклопедии, то и тогда подобную энциклопедию можно будет прочесть, однако лишь потому, что читателю известны физика, химия, биохимия, теория эмбриогенеза, теория самоорганизующихся систем и т.д. Одним словом, ему известны соответствующий

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату