лишены минеральных скелетов. Что именно привело к такой «реконструкции» в кембрии, мы не знаем. Возможно, что эту проблему так никогда и не удастся решить. Однако, углубив наше знание биохимической кинетики, мы, возможно, сумеем раскрыть эту загадку, если нам удастся, исходя из современной структуры белкового гомеостаза, выяснить, какие более примитивные формы могли ему с наибольшей вероятностью предшествовать. Конечно, мы сможем решить эту загадку, лишь если ее решение связано с внутренней структурой организмов, а не с какой-то уникальной цепью космических, геологических или климатических изменений на рубеже кембрия.

Мы говорим об этом, потому что «кембрийский перелом» мог быть вызван какой-то «биохимической находкой» эволюции. Но если такая «находка» и была сделана эволюцией, это все же не изменило исходного фундаментального принципа всей архитектуры, в основе которого лежит использование клеточных кирпичиков.

Эволюции жизни, несомненно, предшествовала эволюция химических реакций; праклеткам не приходилось, таким образом, питаться мертвой материей как источником порядка. Они не смогли бы, кстати, решить сразу и одну из труднейших задач – задачу синтеза органических соединений из простых веществ (вроде двуокиси углерода) с использованием энергии солнечных фотонов. Этот шедевр синтеза осуществили лишь растения, овладев искусством образования хлорофилла и целым аппаратом ферментов, улавливающих лучистые кванты. К счастью, с самого начала праорганизмы располагали, по-видимому, органическими веществами, которые они могли легко усваивать. Это были остатки прежнего изобилия органических веществ, которое появилось в ходе таких процессов, как, скажем, электрические разряды в атмосфере аммиака, азота и водорода.

Вернемся, однако, к основной динамической проблеме элементарной клетки. Клетка должна управлять существенными параметрами своих изменений так, чтобы из области еще обратимых флуктуаций они не ускользнули за пределы обратимости – не привели к разложению и, следовательно, к смерти. В жидкой коллоидной среде подобный контроль может осуществляться лишь с ограниченной скоростью, поэтому флуктуации, вызванные статистической природой молекулярных движений, должны происходить не быстрее общеклеточного обмена информацией. В противном случае центральный регулятор – ядро – утратил бы власть над процессами, происходящими локально, информация о необходимости вмешательства поступала бы тогда, как правило, слишком поздно. Это было бы уже началом необратимых изменений. Итак, размеры клетки диктуются в конечной инстанции двумя параметрами – скоростью передачи информации из произвольного места клетки к регуляторам и скоростью локально происходящих химических процессов. На ранних стадиях эволюция, должно быть, создавала клетки, иной раз существенно различавшиеся размерами. Невозможна, однако, клетка величиной с тыкву или слона. Это вытекает из упомянутых выше ограничений.

Следует заметить, что для человека-технолога клетка является устройством по меньшей мере необыкновенным, которым можно скорее восхищаться, чем понять его. Организм столь «простой», как кишечная палочка (бактерия), делится через каждые 20 минут. В это время бактерия производит белок со скоростью 1000 молекул в секунду. Поскольку молекула белка состоит приблизительно из 1000 аминокислот, каждая из которых должна быть соответственно «расположена» в пространстве и «подогнана» к возникающей молекулярной конфигурации, это не столь уж легкая задача. Примерная, самая осторожная оценка показывает, что бактерия перерабатывает не менее 1000 битов информации в секунду. Это число станет особенно наглядным, если сопоставить его с количеством информации, с каким в состоянии справиться человеческий ум, – около 25 битов в секунду. Печатная страница текста с небольшой информационной избыточностью содержит около 10000 битов. Мы видим, что наибольшим информационным потенциалом клетка обладает в своих внутренних процессах, служащих продолжению ее динамического существования. Клетка является «фабрикой», в которой «сырье» расположено повсюду: оно и рядом, и выше, и ниже «производящих машин» – клеточных органелл, рибосом, митохондрий и подобных им микроструктур, которые на шкале величин находятся между клеткой и химической молекулой. Эти микроструктуры состоят из упорядоченных сложных химических структур с «прикрепленными» к ним обрабатывающими инструментами типа ферментов. Похоже, что «сырье» подается к «машинам» и их «инструментам» не какими-то специальными направленными силами, притягивающими нужное сырье и отталкивающими лишнее или непригодное для «обработки», а просто обычными тепловыми движениями молекул. Таким образом, «машины» как бы бомбардируются потоками танцующих в ожидании своей «очереди» молекул и только благодаря своей специфичности и избирательности выхватывают «надлежащие» элементы из этого кажущегося хаоса. Поскольку все эти процессы без исключения имеют статистическую природу, общие соображения термодинамики склоняют нас к выводу, что в ходе таких изменений должны случаться ошибки (например, введение «ложных» аминокислот в возникающую молекулярную спираль белка). Такие ошибки должны быть, однако, редкостью, по крайней мере в норме: ведь «ложно синтезированных» клеткой белков обнаружить не удается. За последние годы кинетике химических реакций живого был посвящен ряд исследований. Эти реакции исследовались не как жестко повторяющиеся циклические процессы, а как некое пластическое целое, которое можно не только поддерживать в его неустанном беге, но направлять быстро и эффективно к достижению важных в данный момент целей. После переработки «выходных параметров» моделируемой клетки большая вычислительная машина в течение 30 часов вычисляла наивыгоднейшее сочетание скоростей реакций в целом и отдельных звеньев этих реакций в клетке.

Вот к чему приводит необходимая сегодня в науке формализация задачи: те же проблемы бактериальная клетка решает в долю секунды и, разумеется, без мозга – электронного или нейронного.

Однородность клетки является подлинной, но вместе с тем и кажущейся. Подлинной – в том смысле, что ее плазма – коллоидный раствор крупномолекулярных протеидов, белков и липидов, то есть «хаос» молекул, погруженных в жидкую среду. Кажущейся – поскольку прозрачность клетки глумится над попытками подметить ее динамические микроструктуры, а их срез и фиксирование красителями вызывают изменения, уничтожающие первоначальную организацию. Клетка, как показали трудные и хлопотные исследования, не является даже метафорической «фабрикой» из приведенного выше образного сравнения. Процессы диффузии и осмоса между ядром и протоплазмой происходят не просто под действием физического механизма, по градиенту осмотического давления; сами эти градиенты находятся под контролем прежде всего ядра. В клетке можно различить микротоки, молекулярные микропотоки (как бы миниатюрные эквиваленты кровообращения), органеллы же служат узловыми точками этих токов, представляя собой «универсальные автоматы», которые оснащены комплексами ферментов, распределенных в пространстве нужным образом. В то же время органеллы – аккумуляторы энергии, посылаемой в соответствующие моменты в надлежащем направлении.

Если и можно еще как-то представить себе фабрику, состоящую из машин и сырья, плавающих друг подле друга, то трудно понять, как сконструировать фабрику, которая непрестанно меняет свой вид, взаимное сопряжение производственных агрегатов, их специализацию и т.д. Клетка является системой водных коллоидов со многими потоками принудительной циркуляции, со структурой, которая не только подвижна функционально, но и меняется беспорядочно (так что можно даже перемешать протоплазму – лишь бы при этом не повредить некоторых основных структур, – а клетка будет по-прежнему функционировать, то есть жить), непрерывно потрясаемая броуновским движением, с беспрестанными отклонениями от устойчивости. Определенное управление всей совокупностью клеточных процессов возможно только статистически, с использованием немедленных регулирующих воздействий на основе вероятностной тактики. Процессы окисления идут в клетке в виде переноса электронов сквозь «псевдокристаллический жидкий полупроводник». При этом обнаруживаются определенные ритмы, вызванные именно беспрестанным регулирующим воздействием. Это касается и других процессов, например энергетических циклов с аккумулированием энергии в аденозинтрифосфорной кислоте и т.п.

По существу все высшие организмы лишь скомбинированы из этого элементарного строительного материала; это «выводы и следствия» из результатов и данных, заложенных в каждой клетке, начиная с бактериальных. Ни один многоклеточный организм не обладает универсальностью клетки, хотя в некотором смысле эта универсальность заменяется пластичностью центральной нервной системы. Подобную универсальность проявляет любая амеба; без сомнения, очень удобно иметь ногу, которая при надобности станет щупальцем, а в случае потери тут же заменится другой ногой; я имею в виду pseudopodia – ложноножки амеб. Столь же полезна и способность «в любом месте тела открыть рот»; это тоже умеет

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату