кислорода к тканям при развитии острой кислородной недостаточности, являются увеличение минутного объема крови (МОК), повышение скорости кровотока и его перераспределение, в результате чего возрастает кровоснабжение органов, высокочувствительных к гипоксии, в первую очередь головного мозга, а также органов в состоянии гиперфункции – сердца и легких.

В ранние сроки высокогорной адаптации реакции сердечно-сосудистой системы в основном обусловлены повышением активности симпатического отдела вегетативной нервной системы. Увеличивается частота сердечных сокращений, минутный объем кровообращения. При этом МОК возрастает за счет увеличения как темпа сердцебиений, так и систолического (ударного) объема крови. В дальнейшем эти показатели возвращаются к исходному уровню или даже снижаются.

В период кратковременной высокогорной адаптации возрастает и объем циркулирующей крови. Первоначально его увеличение происходит благодаря рефлекторному выбросу крови из депо, а позже – вследствие усиления кроветворения и нарастания массы эритроцитов.

Уровень артериального давления (систолического, диастолического и среднединамического) в первые дни адаптации несколько повышен. Если изменения систолического артериального давления вызваны в основном приростом МОК, то увеличение диастолического обусловлено повышением тонуса периферических артерий. Возрастает линейная скорость кровотока в сосудах. Продолжительное пребывание в условиях высокогорья приводит к развитию артериальной гипотонии.

Исследования показали снижение венозного давления у людей в первые дни пребывания на высотах 3200–3600 м. Полагают, что это вызвано парадоксальной дилатацией емкостных сосудов большого круга в ответ на симпатическую стимуляцию.

При развитии острой гипоксии закономерно повышается давление крови в малом круге кровообращения. Возможные причины легочной гипертензии делят на четыре группы:

1) рефлекторный путь;

2) вазоактивные вещества, включая водородные ионы;

3) химические медиаторы;

4) прямое действие гипоксии на гладкую мускулатуру легочных сосудов (через концентрацию АТФ или ионов Са+2).

Повышение давления в легочной артерии было отмечено и при хронической гипоксии. Этот факт имеет большое значение, так как определяет повышенную функциональную нагрузку на «правое сердце», что является причиной гипертрофии правого желудочка.

Одной из важных приспособительных реакций людей к острой и хронической гипоксии является увеличение кровотока через сосуды мозга – органа, наиболее чувствительного к гипоксии.

Физиологические механизмы, определяющие рост кровотока через мозговые сосуды при гипоксии, изучены недостаточно. Полагают, что уровень кровоснабжения мозга неразрывно связан с метаболическим запросом мозговой ткани в О2. Ингвар рассматривает кровоснабжение мозга как функцию метаболического контроля за миогенной ауторегуляцией сосудов, которая осуществляется через ?pH экстрацеллюлярной жидкости. С этой точкой зрения могут быть согласованы и результаты многих исследований, в которых было установлено сосудорасширяющее влияние на мозговые сосуды различных химических веществ, продуктов метаболизма, образующихся в избыточных количествах при развитии гипоксии.

Определенную роль в повышении уровня мозгового кровообращения играют рефлексы с хеморецепторов синокаротидных и аортальных зон.

Таким образом, в основном расширение мозговых сосудов при развитии гипоксии определяет гуморальная регуляция. Нейрорефлекторная же регуляция играет в этом определенную, но, по-видимому, второстепенную роль.

Было обращено внимание, что увеличению мозгового кровотока при гипоксической гипоксии в определенной мере препятствует гипокапния, неизбежно сопровождающая эту форму кислородного голодания вследствие развития непроизвольной гипервентиляции. Роль гипокапнии в механизме изменения мозгового кровообращения следует учитывать при оценке индивидуальной устойчивости к острой гипоксии, так как, вероятно, у некоторых людей с повышенной чувствительностью к гипокапнии ее возникновение в условиях гипоксии может быть причиной срыва адаптивной дилатации сосудов мозга с последующим проявлением расстройств мозгового кровообращения.

Увеличение коронарного кровотока отмечено при развитии как острой, так и хронической гипоксии.

Физиологический механизм, определяющий его рост, достаточно сложен. При острой гипоксии следует отметить такие экстраваскулярные факторы, как усиление работы сердца и обусловленное этим увеличение перфузии коронарных сосудов, а также связанную с этим прямую реакцию сосудистой стенки на повышение ее растяжения. Определенное значение в механизме дилатации коронарных сосудов при гипоксии придают механическому фактору – росту интенсивности сердечных сокращений. Важную роль в генезе роста коронарного кровообращения при гипоксии играет активация симпатоадреналовой системы. Полагают, что этот механизм является пусковым.

Существенное значение в регуляции коронарного кровообращения при гипоксии придают местным метаболическим реакциям. Они определяют формирование сигнала, указывающего на рассогласование между уровнем коронарного кровотока и метаболической потребностью миокарда в О2.

В процессе адаптации к хронической гипоксии метаболическое обеспечение сердца О2 приводит к структурным сдвигам в организме, одним из проявлений которых является повышенная васкуляризация сердца. Отмечено возрастание концентрации миоглобина и количества митохондрий в миокарде.

Система дыхания

При развитии кислородного голодания, возникающего в результате снижения парциального давления рО2 во вдыхаемом воздухе, происходят существенные сдвиги всех основных параметров дыхания. Различные механизмы влияния гипоксии на организм человека представлены в виде обобщенной схемы на рисунке 2.5.

Рис. 2.5. Обобщенная схема механизмов влияния гипоксии на организм человека (по: В. Б. Малкин и др., 1977)

Изменяется внешнее дыхание, изменяются условия, определяющие диффузию газов и транспорт О2 к тканям, могут происходить сдвиги и в самом тканевом дыхании.

Одной из важнейших адаптивных реакций как при острой, так и при хронической гипоксии является рост легочной вентиляции. Исследования показали, что вентиляция легких начинает увеличиваться уже на высоте 1000 м над уровнем моря. Это происходит в основном благодаря углублению дыхания. Частота дыхания изменяется незакономерно. Следует отметить, что у различных людей при развитии острой гипоксии величина рО2, при которой происходит начальный рост МОД, широко варьирует. Вместе с тем установлено, что у большинства здоровых людей достоверное увеличение МОД отмечается, начиная с высот 2500–3000 м.

Известно, что повышенная легочная вентиляция улучшает газообмен в плохо вентилируемых альвеолах и способствует росту парциального альвеолярного давления кислорода рАО2. Отсюда ясно, что при высоких уровнях вентиляции градиент намного меньше давления О2 в альвеолах и в трахее, чем при низких уровнях легочной вентиляции. Выигрыш в градиенте давления О2 имеет решающее значение для высокогорной адаптации, так как позволяет поддерживать в условиях данной атмосферы максимально возможное рО2 в альвеолах.

Рост легочной вентиляции при развитии острой гипоксии сопровождается быстрой перестройкой нейрогуморальной регуляции дыхания. При этом исследования показали, что автоматическая перестройка дыхания не является оптимальной. Как правило, уровень вентиляции бывает ниже того, который необходим для более эффективного снабжения организма О2 в новых условиях обитания.

Что же препятствует развитию гипервентиляции при гипоксии? На этот вопрос Холден и Пристли (1937) однозначно ответили еще в начале столетия. Они объясняли это развитием гипокапнии – падением рА СО2, которое неизбежно сопровождает гипервентиляцию.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату