Эта информация майора Телятникова показалась... невероятной?! Мол, такого не может быть!
'...Пошел в аппаратное отделение через транспортный коридор 4-го блока. Там сплошным потоком шла вода, пройти не было возможности. В это время с покрытия спустился лейтенант В. И. Правик, доложил обстановку. С ним еще семь человек, им было плохо, всех тошнило. Ехала 'скорая помощь', я ее остановил и отправил всех в поликлинику. Поднялся на покрытие, там никого не было... Было около 3 часов. Связался с директором. Доложил ему обстановку о пожаре, попросил направить дозслужбу. Но у директора дозиметристов под рукой не было, он мне разрешил взять любого, кого найду на АЭС. Директор попросил откачивать воду, которая заливает 3-й энергоблок. Поставили одно отделение для откачки воды. Сам побежал искать дозиметристов.
Нашел одного на 1-м энергоблоке. Внутри обстановку полностью не знали, а на покрытиях пожар был потушен. Это было в 03 ч. 30 мин. Мы объехали боевые участки, был создан штаб пожаротушения. Об этом мы доложили директору...
Да, 'малый' пожар был ликвидирован. И что греха таить, некоторых это успокоило. Они не подозревали, что там, внутри здания 4-го блока, разгорается иной 'пожар' - ядерный...
Записка из зала: 'Моделировалась ли подобная авария на электронных вычислительных машинах? Существуют ли специальные тренажеры, которые помогают операторам находить выход из самых сложных ситуаций?'
Это было на одном из заводов, где для реактора изготовлялась и испытывалась аппаратура.
...Сосредоточенная тишина, еще несколько секунд назад царившая здесь, взорвалась в неистовстве звонков, сирен и вспышек лампочек. 'Опасно! Опасно!' - вбивают в твою голову светящиеся табло, и ты невольно ускоряешь шаг, чтобы скрыться за дверью.
Собственно говоря, никакой аварии не было. Ее и не могло быть. Реактор стоял на ремонте, к тому же на наших установках даже при неосторожности попасть под облучение трудно. Автоматы - стражи верные и незаметные. Они поистине 'невидимки', которые сами видят все хорошо и не пускают никого за пределы биологической защиты.
Описанная выше сценка - не что иное, как аварийная тренировка. Будучи на одном из реакторов, я попросил службу радиационной безопасности продемонстрировать свое мастерство. Они это сделали с удовольствием. Ведь самим-то приходится наблюдать подобную 'экзотику' лишь во время 'учений'...
У физиков есть термин 'разгон реактора'. Иными словами, это когда реакция вырывается из-под контроля.
Словно обезумевшее животное, она не слушается хозяина, становится неуправляемой. Мощность реактора нарастает. Как бурная река, размывшая плотину и водопадом устремившаяся вниз, бушует поток нейтронов в лктивной зоне. И не будь аварийных мер, реактор вышгл бы из строя.
Аварийные стержни подстраховывают регулирующие.
Если начнется разгон реактора или откажет какой-либо из узлов, в активную зону опускаются дополнительные стержни, усмиряющие водопад нейтронов. Реактор останавливается...
Да, бдительный оператор внимательно следпт за приборами. Обстановку ему постоянно докладывают автоматы. И как хорошо, когда стрелки в нужном положении, не мигают сигнальные табло - все нормально.
А чтобы так было, все узлы и аппаратура, прежде чем стать на предназначенную им вахту, подвергаются длительным и разнообразным испытаниям на стендах.
Здесь сдается экзамен на работоспособность. Экзаменаторы же придирчивы и внимательны. От них не ускользнет ни малейший дефект...
Непосвященному стенд кажется каким-то необычным сооружением звездных пришельцев. Улетают ввысь стены, человек совсем теряется на их фоне... Все здесь сделано ради одного: проверки 'механизмов' реактора на термостойкость, живучесть, выносливость. Внутри стенда нет ни урана, ни плутония. Но хотя в его 'топке' не горит ядерное горючее, однако имитация полная.
Как поведут себя материалы при высоких температурах и давлениях? Выдержат ли узлы? Приборы на пульте управления стендов показывают: выдержат!
Но экзаменаторы медлят с ответом долгие часы.
Слишком много вопросов задают инженеры, немалое число проверок надо провести.
Прежде всего это испытания на термическую усталость. Еслн возьмем металлический стержень, крепко зажмем концы и будем его попеременно нагревать и охлаждать, то он искривится или покоробится, да еще на нем появятся трещины - из-за так называемых термических напряжений. Под действием температуры стержень стремится расшириться (вспомните: между рельсами всегда есть зазор - зимой он больше, летом меньше), однако его концы накрепко схвачены. Молекулы внутри металла движутся быстрее, но они кэк бы спрессованы с обеих сторон. И им ничего не остается, как чуть-чуть изогнуть стержень. Если в этот момент он охлаждается, молекулы замедляют свое движение. И вновь нагрев, и снова охлаждение... Как ветер и вода превращают в песок самые твердые скалы, так и термические напряжения постепенно разрушают металл.
В реакторе, где к тому же возможен перепад температур, термическим напряжением 'помогают' излучения.
Поток частиц, плотно наполняющий активную зону и смежные области, пронизывает материал: и 'ослабляет' его. Не остается в стороне и коррозия. Стоит только гденибудь образоваться микроскопической трещине, она тут как тут. Вот почему инженеры и ученые не перестают бороться с термическими напряжениями... Вся тяжесть ложится на конструкторов, которые должны предусмотреть, чтобы металл реактора не 'уставал'. Именно поэтолму и скорость изменения температуры в действующей установке невелика.
В краткой энциклопедии 'Атомная энергия' написано: 'Сопротивление термической усталости сильно зависит от условий и методов испытания, стандартизация которых еще не проведена'. Энциклопедия вышла в начале 60-х годов, сегодня вторая половина этой фразы устарела. Уже не только разработаны методы и аппаратура испытаний - стали привычными сами испытания.
'Отличники' прошли самое трудное - пережили даже такие условия, которые не встретятся в действительности. В частности, им довелось принять на себя так называемый тепловой удар. Он может произойти, если, например, разорвутся трубы первого контура. Температура резко взмывает вверх, и напряжения увеличиваются подчас в несколько десятков раз, Для металлических конструкций однократный тепловой удар не так уж опасен: он гасится пластическими деформациями. Хуже обстоит дело с хрупкими материалами. Керамика - та просто рассыпается.
Да и самый прочный металл при неблагоприятных обстоятельствах может стать хрупким! И поэтому уже в процессе изготовления принимаются всяческие меры, чтобы увеличить стойкость материалов при больших тепловых нагрузках. Для этого вводят различные добавки, устраняются резкие переходы и надрезы в деталях, где концентрируются температурные напряжения... И хотя это делается заранее и как будто все предусмотрено, детали, предназначенные для активной зоны реактора, в своем 'аттестате зрелости' должны иметь отметку и по испытанию на тепловой удар.
'Совпадение многих самых неблагоприятных факторов привело к аварии, считает академик Е. Велихов. - Можно ли было ее смоделировать? Как ни парадоксально эго звучит, по физики даже не могли и предположить, что такое случится... И дело не в теоретических расчетах, во время процесса остановки реактора на ремонт были допущены обслуживающим персоналом столь элементарные ошибки, что даже поверить в них трудно...'
Как часто ошибка одного или нескольких человек приводит к трагедии?! И масштабы ее