Эта информация майора Телятникова показалась... невероятной?! Мол, такого не может быть!

'...Пошел в аппаратное отделение через транспортный коридор 4-го блока. Там сплошным потоком шла вода, пройти не было возможности. В это время с покрытия спустился лейтенант В. И. Правик, доложил обстановку. С ним еще семь человек, им было плохо, всех тошнило. Ехала 'скорая помощь', я ее остановил и отправил всех в поликлинику. Поднялся на покрытие, там никого не было... Было около 3 часов. Связался с директором. Доложил ему обстановку о пожаре, попросил направить дозслужбу. Но у директора дозиметристов под рукой не было, он мне разрешил взять любого, кого найду на АЭС. Директор попросил откачивать воду, которая заливает 3-й энергоблок. Поставили одно отделение для откачки воды. Сам побежал искать дозиметристов.

Нашел одного на 1-м энергоблоке. Внутри обстановку полностью не знали, а на покрытиях пожар был потушен. Это было в 03 ч. 30 мин. Мы объехали боевые участки, был создан штаб пожаротушения. Об этом мы доложили директору...

Да, 'малый' пожар был ликвидирован. И что греха таить, некоторых это успокоило. Они не подозревали, что там, внутри здания 4-го блока, разгорается иной 'пожар' - ядерный...

* * *

Записка из зала: 'Моделировалась ли подобная авария на электронных вычислительных машинах? Существуют ли специальные тренажеры, которые помогают операторам находить выход из самых сложных ситуаций?'

Репортаж с испытаний реактора

Это было на одном из заводов, где для реактора изготовлялась и испытывалась аппаратура.

...Сосредоточенная тишина, еще несколько секунд назад царившая здесь, взорвалась в неистовстве звонков, сирен и вспышек лампочек. 'Опасно! Опасно!' - вбивают в твою голову светящиеся табло, и ты невольно ускоряешь шаг, чтобы скрыться за дверью.

Собственно говоря, никакой аварии не было. Ее и не могло быть. Реактор стоял на ремонте, к тому же на наших установках даже при неосторожности попасть под облучение трудно. Автоматы - стражи верные и незаметные. Они поистине 'невидимки', которые сами видят все хорошо и не пускают никого за пределы биологической защиты.

Описанная выше сценка - не что иное, как аварийная тренировка. Будучи на одном из реакторов, я попросил службу радиационной безопасности продемонстрировать свое мастерство. Они это сделали с удовольствием. Ведь самим-то приходится наблюдать подобную 'экзотику' лишь во время 'учений'...

У физиков есть термин 'разгон реактора'. Иными словами, это когда реакция вырывается из-под контроля.

Словно обезумевшее животное, она не слушается хозяина, становится неуправляемой. Мощность реактора нарастает. Как бурная река, размывшая плотину и водопадом устремившаяся вниз, бушует поток нейтронов в лктивной зоне. И не будь аварийных мер, реактор вышгл бы из строя.

Аварийные стержни подстраховывают регулирующие.

Если начнется разгон реактора или откажет какой-либо из узлов, в активную зону опускаются дополнительные стержни, усмиряющие водопад нейтронов. Реактор останавливается...

Да, бдительный оператор внимательно следпт за приборами. Обстановку ему постоянно докладывают автоматы. И как хорошо, когда стрелки в нужном положении, не мигают сигнальные табло - все нормально.

А чтобы так было, все узлы и аппаратура, прежде чем стать на предназначенную им вахту, подвергаются длительным и разнообразным испытаниям на стендах.

Здесь сдается экзамен на работоспособность. Экзаменаторы же придирчивы и внимательны. От них не ускользнет ни малейший дефект...

Непосвященному стенд кажется каким-то необычным сооружением звездных пришельцев. Улетают ввысь стены, человек совсем теряется на их фоне... Все здесь сделано ради одного: проверки 'механизмов' реактора на термостойкость, живучесть, выносливость. Внутри стенда нет ни урана, ни плутония. Но хотя в его 'топке' не горит ядерное горючее, однако имитация полная.

Как поведут себя материалы при высоких температурах и давлениях? Выдержат ли узлы? Приборы на пульте управления стендов показывают: выдержат!

Но экзаменаторы медлят с ответом долгие часы.

Слишком много вопросов задают инженеры, немалое число проверок надо провести.

Прежде всего это испытания на термическую усталость. Еслн возьмем металлический стержень, крепко зажмем концы и будем его попеременно нагревать и охлаждать, то он искривится или покоробится, да еще на нем появятся трещины - из-за так называемых термических напряжений. Под действием температуры стержень стремится расшириться (вспомните: между рельсами всегда есть зазор - зимой он больше, летом меньше), однако его концы накрепко схвачены. Молекулы внутри металла движутся быстрее, но они кэк бы спрессованы с обеих сторон. И им ничего не остается, как чуть-чуть изогнуть стержень. Если в этот момент он охлаждается, молекулы замедляют свое движение. И вновь нагрев, и снова охлаждение... Как ветер и вода превращают в песок самые твердые скалы, так и термические напряжения постепенно разрушают металл.

В реакторе, где к тому же возможен перепад температур, термическим напряжением 'помогают' излучения.

Поток частиц, плотно наполняющий активную зону и смежные области, пронизывает материал: и 'ослабляет' его. Не остается в стороне и коррозия. Стоит только гденибудь образоваться микроскопической трещине, она тут как тут. Вот почему инженеры и ученые не перестают бороться с термическими напряжениями... Вся тяжесть ложится на конструкторов, которые должны предусмотреть, чтобы металл реактора не 'уставал'. Именно поэтолму и скорость изменения температуры в действующей установке невелика.

В краткой энциклопедии 'Атомная энергия' написано: 'Сопротивление термической усталости сильно зависит от условий и методов испытания, стандартизация которых еще не проведена'. Энциклопедия вышла в начале 60-х годов, сегодня вторая половина этой фразы устарела. Уже не только разработаны методы и аппаратура испытаний - стали привычными сами испытания.

'Отличники' прошли самое трудное - пережили даже такие условия, которые не встретятся в действительности. В частности, им довелось принять на себя так называемый тепловой удар. Он может произойти, если, например, разорвутся трубы первого контура. Температура резко взмывает вверх, и напряжения увеличиваются подчас в несколько десятков раз, Для металлических конструкций однократный тепловой удар не так уж опасен: он гасится пластическими деформациями. Хуже обстоит дело с хрупкими материалами. Керамика - та просто рассыпается.

Да и самый прочный металл при неблагоприятных обстоятельствах может стать хрупким! И поэтому уже в процессе изготовления принимаются всяческие меры, чтобы увеличить стойкость материалов при больших тепловых нагрузках. Для этого вводят различные добавки, устраняются резкие переходы и надрезы в деталях, где концентрируются температурные напряжения... И хотя это делается заранее и как будто все предусмотрено, детали, предназначенные для активной зоны реактора, в своем 'аттестате зрелости' должны иметь отметку и по испытанию на тепловой удар.

Чернобыль. Первые минуты и часы аварии

'Совпадение многих самых неблагоприятных факторов привело к аварии, считает академик Е. Велихов. - Можно ли было ее смоделировать? Как ни парадоксально эго звучит, по физики даже не могли и предположить, что такое случится... И дело не в теоретических расчетах, во время процесса остановки реактора на ремонт были допущены обслуживающим персоналом столь элементарные ошибки, что даже поверить в них трудно...'

Как часто ошибка одного или нескольких человек приводит к трагедии?! И масштабы ее

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату