ослабленные модусы, остаётся 19 правильных модусов силлогизма.
Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объёмами имён.
Возьмём, для примера, силлогизм:
Все металлы
Железо
Железо (S) ковко (Р).
Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все
Другой пример силлогизма:
Все рыбы
У всех птиц
Ни одна птица
Отношения между терминами данного силлогизма (модус
Пример неправильного силлогизма:
Все тигры
Все тигры
Все хищники (S) – млекопитающие (Р).
Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все
В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развёртывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.
В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются
Для оценки правильности рассуждения в энтимеме следует восстановить её в полный силлогизм.
Глава 10
Доказательство и опровержение
1. Понятие доказательства и его структура
Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.
Позднее Ньютон изменил своё мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.
Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т.п.
Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем – чаще всего незаметно для себя – общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т.д.
Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.
Логическая теория доказательства в основе своей проста и доступна, хотя её детализация требует специального символического языка и другой изощрённой техники современной логики.
Под доказательством в логике понимается процедура установления истинности некоторого утверждения путём приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.
В доказательстве различаются
К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решётке свободные электроны». Строим умозаключение:
Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят
