пациентов.
Помимо всего прочего, широкое распространение таких чипов-лабораторий радикально изменит стоимость диагностики болезней. В настоящее время биопсия или химический анализ может стоить несколько сотен долларов и продолжаться несколько недель. В будущем она, скорее всего, будет обходиться буквально в копейки и занимать несколько минут. Скорость и доступность диагностики рака резко вырастут. Можно представить, к примеру, что каждый раз при чистке зубов мы будем проходить тщательную проверку на множество разных болезней, включая рак.
Лерой Худ (Leroy Hood) и его коллеги из Вашингтонского университета создали чип размером около 4 см, способный обнаруживать определенные белки по одной-единственной капле крови. Белки — строительный материал жизни. Все в нас — мышцы, кожа, волосы, гормоны и ферменты — состоит из белков. Разработка технологии поиска белков, характерных для различных болезней вроде рака, могла бы привести к созданию системы раннего предупреждения. В настоящее время такой чип стоит всего 10 центов и может определить какой-то конкретный белок в течение десяти минут; можно сказать, что он в несколько миллионов раз более эффективен, чем предыдущая система. Худ считает, что наступит день, когда чип- анализатор сможет быстро проверить сотни тысяч белков и предостеречь человека от множества болезней за несколько лет до того, как они приобретут сколько-нибудь серьезный характер.
Углеродные нанотрубки
Довольно наглядное представление о мощи нанотехнологий можно получить при взгляде на углеродные нанотрубки. В принципе известно, что они прочнее стали и к тому же проводят электричество, что сразу наводит на мысль об углеродных компьютерах. Но есть и проблема: для настоящей прочности такие трубки должны быть цельными, а самый длинный на сегодняшний день фрагмент чистого углеродного волокна составляет в длину всего несколько сантиметров. Но когда-нибудь из углеродных нанотрубок можно будет делать целые компьютеры и иные молекулярные структуры.
Углеродные нанотрубки состоят из отдельных атомов углерода, соединенных между собой в форме трубки. Представьте себе обычную садовую сетку, где каждое проволочное перекрестье представляет собой атом углерода. А теперь скатайте сетку в рулон — и получите геометрию углеродной нанотрубки. Такие нанотрубки возникают естественным образом всякий раз, когда образуется печная сажа, но ученым никогда не приходило в голову, что атомы углерода могут связываться еще и в такой неожиданной геометрии.
Поистине чудесными свойствами углеродные нанотрубки обязаны своей атомной структуре. Как правило, любой твердый кусок вещества, скажем камень или кусок дерева, представляет собой конгломерат из множества перекрывающихся структур. В такой смеси легко возникают трещины, а значит, такие предметы легко ломаются. Из этого следует, что прочность вещества определяется несовершенством его молекулярной структуры. Но не всегда это несовершенство заключается в нарушениях правильной структуры. К примеру, графит тоже представляет собой чистый углерод, но мы знаем, что это очень мягкий материал, поскольку он состоит из слоев углеродных атомов. Слои связаны между собой слабее, чем атомы внутри слоя, где каждый атом связан с тремя соседними, и могут легко скользить друг по другу.
Алмаз — это тоже чистый углерод, но одновременно это самый прочный природный минерал. Атомы углерода в алмазе организованы в плотную кристаллическую решетку с сильными связями, что и придает этому минералу его феноменальную прочность. Так же и углеродные нанотрубки обязаны своими поразительными свойствами правильной атомной структуре.
Углеродные нанотрубки постепенно прокладывают себе путь в промышленность. Благодаря хорошей проводимости из них можно делать кабели для мощных линий электропередач. Благодаря прочности их можно использовать для создания материалов более прочных, чем кевлар.
Однако самое важное, возможно, применение углеродные нанотрубки найдут в компьютерном деле. Углерод — один из нескольких кандидатов на замену кремния в качестве основы компьютерных технологий. Не исключено, что когда-нибудь будущее мировой экономики будет зависеть от ответа на вопрос: что заменит кремний?
Послекремниевая эпоха
Мы уже говорили, что закон Мура — фундамент информационной революции — не будет работать вечно. Не исключено, что страна, которой удастся первой найти подходящую замену кремнию, будет определять судьбы мира.
Когда рухнет закон Мура? Этот вопрос уже давно сотрясает мировую экономику. В 2007 г. самого Гордона Мура спросили, сможет ли знаменитый закон, названный его именем, работать всегда. «Разумеется, нет», — сказал Мур и предсказал, что его действие прекратится через десять-пятнадцать лет.
Примерно так же оценил перспективы компьютерной отрасли Паоло Гардини, сотрудник фирмы Intel, отвечающий за внешние исследования. Поскольку Intel Corporation задает тон всей полупроводниковой промышленности, слова Гардини подверглись тщательному анализу. В 2004 г. на ежегодной конференции Semicon West он сказал: «Мы понимаем, что можем продержаться на законе Мура еще по крайней мере лет пятнадцать-двадцать».
Движущей силой нынешней революции в мире кремниевых компьютеров является один принципиальный факт: способность УФ-излучения наносить на кремниевую подложку все более и более миниатюрные транзисторы, которые затем вытравливаются. Сегодня в процессоре Pentium на площади размером с ноготь может уместиться несколько сотен миллионов транзисторов. Поскольку длину волны УФ- излучения можно уменьшить до 10 нм, технология травления позволяет получать компоненты всего по 30 атомов в поперечнике. Но процесс миниатюризации не может продолжаться вечно. Рано или поздно он остановится по нескольким причинам.
Во-первых тепло, выделяемое мощными микросхемами, рано или поздно начнет их плавить. Поэтому не годится предложенное кем-то наивное решение — наложить несколько микросхем одна на другую, создав кубический чип. Да, это увеличит мощность процессора, но лишь ценой большего тепловыделения. Кубический чип выделяет так много жара, что на нем можно приготовить яичницу. К тому же кубическая форма затрудняет теплообмен, поскольку из всех параллелепипедов куб имеет минимальную площадь поверхности. Представьте: если увеличить сторону куба вдвое, то его объем (а значит, и выделяемое им тепло) вырастет в восемь раз, а площадь поверхности — только вчетверо. Это значит, что у кубического чипа количество выделяемого тепла с увеличением размеров растет вдвое быстрее, чем возможность охлаждения. Очевидно, кубические чипы — всего лишь частичное, временное решение проблемы.
Кое-кто предлагал использовать для травления микросхем не УФ-излучение, а рентгеновские лучи. В принципе это могло бы сработать, поскольку длина волны у рентгеновского излучения может быть в 100 раз меньше, чем у ультрафиолетового света. Но за все надо платить. При переходе с УФ на рентген энергия луча также увеличивается примерно в 100 раз. Это означает, что травление рентгеновским излучением может попросту погубить подложку, на которой вы пытаетесь что-то изобразить. Попытку применить рентген для литографии можно сравнить с попыткой художника изваять тонкую скульптуру при помощи паяльной лампы. Рентгеновская литография требует строжайшего контроля всех параметров и может служить лишь временным решением.
Во-вторых, существует фундаментальная проблема, проистекающая непосредственно из квантовой теории: принцип неопределенности, который утверждает, что нельзя точно знать одновременно положение и скорость атома или частицы. В сегодняшнем процессоре Pentium толщина слоя составляет около 30 атомов. К 2020 г. она может уменьшиться до пяти атомов; при этом электроны, из-за неопределенности своего положения, начнут просачиваться сквозь слои, вызывая короткое замыкание. Таким образом, для размера кремниевых компьютеров существует квантовое ограничение.
Как я уже упоминал, в своем обращении к 3000 лучших инженеров Microsoft в штаб-квартире компании в Сиэтле я сделал акцент на проблеме прекращения действия закона Мура. Лучшие творцы