Галлей — миротворец из миротворцев — предложил Ньютону довольно простой способ снять притязания Гука.
22 мая 1686 года
«…Есть ещё одна вещь, о которой я должен Вас известить, а именно: господин Гук имеет кое-какие притязания на открытие закона изменения тяжести, которая затухает пропорционально квадрату расстояния от центра. Он сказал, что Вы заимствовали эту идею у него, хотя признаёт, что демонстрация кривых, которые создаются таким образом, является полностью Вашей. Что из этого правда, а что нет — Вы знаете лучше меня, как знаете лучше меня и то, как поступить в данном случае. Во всяком случае, господин Гук, по-видимому, ожидает, что Вы должны каким-то образом отметить его в предисловии, которое, возможно, Вы сочтёте нужным предпослать Вашему труду… Я должен просить Вашего прощения за то, что именно я посылаю это сообщение, но я считаю своим долгом известить Вас — с тем, чтобы Вы могли действовать соответственно. Сам я полностью убеждён в том, что ничто, кроме величайшего великодушия, которое только можно вообразить, не может ожидаться от человека, который изо всех людей менее всего нуждается в том, чтобы утверждать свою репутацию…»
27 мая 1686 года
«…Существо того, что происходило между г-ном Гуком и мной (до предела напрягаю память), таково. Он настойчиво просил, чтобы я посылал ему ответы на те или иные философские вопросы, и я однажды выразил в своём ответе мнение о том, что падающее тело за счёт непрерывного движения Земли должно перемещаться к востоку, а не к западу, как это обычно считают. И в схеме, поясняющей это, я неосторожно обозначил линию падения тела как спираль, закручивающуюся к центру Земли: это справедливо в сопротивляющейся среде, такой, как наш воздух. Г-н Гук ответил, что тело не будет успокаиваться в центре, а при определённых условиях снова вернётся вверх. Я затем взял простейший для вычислений случай — такой, когда сила тяжести одинакова в сопротивляющейся среде, предполагая, что он получил свои условия с помощью каких-то вычислений, и по этой причине для начала рассматривал простейший случай — и… определил условия настолько точно, насколько мог. Он же ответил, что сила тяжести неоднородна, но увеличивается с приближением к центру в обратной квадратичной зависимости от расстояния от него. И поэтому условие будет иное, чем то, которое я указал… он добавил, что в соответствии с этой квадратичной пропорцией можно объяснить движение планет и определить их орбиты. Вот суть того, что я могу припомнить. Если есть ещё что-нибудь, или что-то не так, я хотел бы, чтобы г-н Гук напомнил бы мне. Но я припоминаю и то, что приблизительно за девять лет до этого сэр Кристофер Рен был у господина Донна, и я в его комнатах дал ему (Рену) полный обзор проблемы определения небесных движений на научных принципах. Это было за год или два до того, как я получил письма Гука. Вы знакомы с сэром Кристофером. Прошу, узнайте у него, когда и от кого он впервые услышал о затухании силы в квадрате расстояния от центра Кеплер знал, что орбиты не окружности, а овалы, и догадывался, что они эллиптические. Точно так же Гук, не зная того, что я открыл со времени его писем ко мне, не может знать более того, что пропорция примерно квадратичная на больших расстояниях; он только догадывался, что это в точности так, и плохо догадался, распространив эту пропорцию до действительного центра, в то время как Кеплер правильно догадался с эллипсом. Итак, Гук сделал менее для пропорции, нежели Кеплер для эллипса».
Ответ Ньютона был резким и недвусмысленным. Он отказывался давать какую-либо специальную ссылку на Гука и указывал, что ссылка на Гука там уже есть в числе многих прочих имён, имеющих касательство к системе мира. Ньютон утверждал, что уж если кто-то и выдвинул до него идею тяготения, то это был не Гук, а Рен.
А уже через несколько дней Галлей послал Ньютону оттиск первого листа книги.
7 июня 1686 года
«Мы думаем печатать её на этой бумаге и этими литерами. Если Вы имеет какие-то возражения, всё можно ещё изменить, а если Вы принимаете, мы будем продолжать… Прошу, просмотрите, пожалуйста, корректуру и пошлите её вместе с Вашим ответом. Я уже смотрел её, но не уверен, что устранил все погрешности… Оттиск этого листа не так отчётлив, как должен быть, но… я видел очень красивую новую книгу с этим набором литер, потому я надеюсь, что издание и в этом отношении удовлетворит Вас».
Но главное в письме не это. Галлей убеждает Ньютона в том, что необходимо обязательно включить в книгу третью часть — с законами небесного движения. Она, по его мнению, носит принципиальный характер. Он считает, что математические результаты, полученные в первой книге, вполне применимы к третьей и доступны нематематикам. Он ни словом не упоминает об одном обстоятельстве, важном для него лично. Ведь он был совсем небогатым человеком. А третья часть сильно увеличила бы тираж и повысила бы число покупателей.
Видимо, претензии Гука сильно задели Ньютона, 20 июня он приводит и новые аргументы.
20 июня 1686 года
«…Борелли кое-что сделал в этой области и скромно об этом написал. Он же (Гук. —
Если уж искать предтеч, считает Ньютон, нужно обратиться к самым истокам, к Гюйгенсу. Гюйгенс показал, как находить силу во всех случаях кругового движения. И, таким образом, честь исполнения принадлежит ему. Неточной догадке Гука, утверждает Ньютон, не поверил бы ни один здравомыслящий философ. А без доказательств подобные догадки не имеют значения.
Не довольствуясь этим, Ньютон хочет решить вопрос радикально:
«…Третью книгу я намерен теперь устранить. Философия — это такая наглая и сутяжная леди, что иметь с ней дело — всё равно что быть вовлечённым в судебную тяжбу… Я знал это раньше, знаю и сейчас и появлюсь рядом с ней не ранее, как она сама подаст мне знак… Две первые книги без третьей, таким образом, не будут называться «Математические начала натуральной философии», и посему я поначалу изменил название на «De motu corporum» («О движении тел»), в двух книгах, но, поразмыслив, оставил прежнее название. Это поможет продаже книг — я не должен ухудшать её: книга принадлежит Вам».
Но не мог он этого сделать — отказаться от третьей части, хотя и пытался отвлечь себя чем-нибудь другим: посадкой яблонь, изготовлением сидра и иными подобными делами. Не мог отказаться и от названия «Philosophiae naturalis principia mathematica» — «Математические начала натуральной философии», которое, конечно, было весьма многозначительным, ибо явно вызывало на поединок труд самого Декарта «Philosophiae principia» («Начала философии»). Он не мог сделать этого ещё и потому, что целиком зависел в издании этой книги от Галлея, не мог подвести его. Слово «математические» должно было остаться, потому что впервые математика столь широко применялась к «натуральной философии», то есть к физике. Кроме того, слово «математические» должно было притупить бдительность церковных цензоров. Математика почиталась занятием неопасным.
Галлей послал Ньютону ответное письмо, где пытался всячески скрасить сложившуюся ситуацию, уговаривал Ньютона не сердиться на Гука. Он опять описывал события памятного дня 28 апреля и пытался изложить всё самым почётным для Ньютона образом.
29 июня 1686 года
«…Я всем сердцем жалею, что там, где всё человечество должно выразить свою признательность по отношению к Вам, Вы встретились с чем-то, что приносит Вам беспокойство или какое-то разочарование, заставляющие Вас думать о предъявлении претензий к леди, чьими знаками внимания Вы по праву можете гордиться. И это не она, а Ваши соперники, завидующие Вашему счастью, пытаются разрушить Вашу спокойную радость, которая… я надеюсь, будет причиной перемены Вашего прежнего решения об отмене