производства льна, шерсти, хлопка?

Одна из причин понятна всем: тот же хлопок растет далеко не везде, его урожаи и качество зависят от капризов природы. Но есть и внутренний «секрет»: химические волокна проще в переработке, они намного повышают производительность. Поэтому задача состоит в том, чтобы наделить их лучшими свойствами натуральных нитей…

За кулисами этой задачи — третья причина: похоже, за последние годы химики убедились, что у них гораздо больше шансов «перекачать» ценные свойства от натуральных волокон к химическим, чем наоборот.

Подтверждением тому — био-ПАНволокно. Сокращение ПАН выдает его полиакрило-нитрильную природу. Но в процессе получения эта синтетическая основа получает «добавку» в виде биомассы из особых микроорганизмов. И приобретает свойства, приближающие его к шерсти…

Способ получения углеродных волокон из хлопковых и льняных разработан еще в конце прошлого века. Но потом о нем надолго забыли. И вспомнили лишь тогда, когда ракетно-космическая техника потребовала легких и прочных теплозащитных материалов. Так появились современные углеродные волокна, которые в инертной среде выдерживают до трех тысяч градусов, а в окисленной — до четырехсот…

Сегодня углеродные волокна получают в основном из вискозных и поли-акрилонитрильных, нагревая их до высоких температур в инертной среде. При этом атомы кислорода, водорода, азота и других элементов «выжигаются», но углеродная цепочка полимерной молекулы остается. Понятно, что волокно с такой «конструкцией» получается хрупким. Но даже как простой наполнитель оно наделило изделия прочностью металла при весе в 3–5 раз меньше. А потом специалисты научились превращать его в нити, жгуты, ленты, ткани.

И сразу как из рога изобилия посыпались новые области применения. Костюмы с электроподогревом, отопительные элементы для домиков газовиков, теплиц, кабин тракторов и дорожных машин — они могут питаться током напряжением от 36 до 220 вольт. В конструкциях самолетов листовые панели на основе углеродной ленты вступили в спор со стеклопластиками, снижая вес конструкции на 10–15 процентов.

Углеродное волокно нашло применение и в фильтрах для очистки лекарств и донорской крови, в системах улавливания вредных выбросов и защиты органов дыхания. Здесь оно поглощает самые разные вредные вещества — вплоть до паров ртути — в 3–4 раза быстрее, чем активированный уголь.

Но и на этом перечень профессий углеродного волокна не кончается. До недавнего времени считалось, что углерод существует в трех формах — в виде алмаза, графита и аморфного углерода. Ученые же Института элементоорганических соединений АН СССР доказали, что есть и четвертый вариант — углерод с линейной структурой, получивший название карбин. По свойствам он — полупроводник. Но под действием света во много раз увеличивает электропроводность, благодаря чему может быть использован в фотоэлементах. А сегодня на основе карбина создано волокно витлан, незаменимое в восстановительной хирургии. Химики давно научились делать искусственные кровеносные сосуды из волокон. Но все они сохраняли недостаток естественных — в них образовывались тромбы. Сосуды же из витлана исключили эту опасность. Если уж менять что-то в организме на «запасные части», так пусть они будут лучше, чем созданные природой…

ПЛЕНКА ГАРАНТИРУЕТ СВЕЖЕСТЬ

Первоначальная свежесть, питательные и вкусовые качества овощей и фруктов долго сохраняются благодаря специальной синтетической пленке, созданной Казахским научно-исследовательским институтом плодоводства и виноградарства в содружестве с химиками.

Идею подсказала природа, выработав у растений способность покрывать плоды слоем воска. Этот слой защищает их от потери влаги и от микроорганизмов, но на сорванных плодах быстро разрушается. Казахстанские ученые предложили заменить воск особо обработанным парафином. Пленка из него не боится низких температур и достаточно прочна. Этот защитный материал испытан на многих видах овощей и фруктов. Проведены опыты и с картофелем.

Клубни его при таком способе хранения длительное время остаются сочными. Некоторые виды пленок применяются на мясокомбинатах. Покрытое ими мясо долго не теряет своих первоначальных качеств.

ЖЕЛЕЗНОЕ ДЕРЕВО

Прочность металла обретают деревянные конструкции, обработанные по технологии эстонских ученых.

Обычные доски из малопригодных в строительстве лиственных мягких пород пропитываются в вакууме особым составом сланцевых смол, а затем, как керамические изделия, обжигаются в печи. Смолы, проникая во все поры древесины, затвердевают, и такая древесина уже не боится ни сырости, ни огня, ни биологически активных веществ. До термообработки конструкции можно придать любую форму, например, согнуть доску в колесо.

ЧТО ПЛЕНКЕ ПО ПЛЕЧУ?

Специалисты научно-производственного объединения «Пластик» считают, что возможности полимерных пленок еще далеко не исчерпаны. Так, например, для теплиц они создали полиэтиленовую селективную пленку типа «инфран». Специальные добавки наделили ее ценным свойством — она задерживает инфракрасное излучение, пытающееся покинуть теплицы, и тем самым сберегает немало тепла. А в итоге урожайность в теплицах повышается на 10–15 процентов.

Иное дело — двухслойная вспененная полиэтиленовая пленка: ее задача — рассеивать падающие потоки света. Благодаря этому в теплицах создается мягкое, ровное освещение, избавляющее растения от резких воздействий солнечной радиации. И они в ответ щедро увеличивают зеленую массу.

Среди разработок химиков есть и полиэтиленовая пленка с примесью… сажи: она не пропускает лучи видимой части солнечного спектра. И поэтому на укрытых ею участках всходы сорняков обречены на гибель.

Но одновременно в пленке предусмотрены отверстия: для посадки саженцев культурных растений, для их снабжения светом и влагой. Применение такой пленки обеспечивает ранние всходы, увеличивает урожайность и сокращает затраты труда на уход за растениями.

«ЗОЛОТОЕ РУНО» СИНТЕТИКИ

Требования к одежде сегодня настолько многоплановы, что заставили ввести обобщающее их понятие — социальный комфорт. В частности, оно означает, что в каких бы условиях ни оказался владелец — попал ли под дождь или совершил поездку в переполненном автобусе, — одежда должна сохранить нарядный внешний вид, не сминаться, не приобретать пятен. С позиций этих требований синтетические волокна намного перспективнее натуральных. Но по гигиеническим свойствам, главное из которых — способность впитывать влагу, синтетика до последнего времени намного уступала хлопку или шерсти.

Отсюда и недоверие многих посетителей нашего института, когда мы показываем своего рода «фокус». В ванночку с раствором красителя опускаем концы трех внешне одинаковых полосок ткани. И через три минуты предлагаем ответить: из каких волокон они сделаны?

Человек видит, что первый образец практически не впитывает раствор, Второй — окрасился до половины, а третий — до самого верха. И уверенно отвечает: первый — синтетика, второй ее смесь с хлопком, третий — чистый хлопок. А дальше, когда выясняется, что из хлопка сделан лишь второй образец, а два других — из одинаковых синтетических волокон, мы обычно слышим: «Не может быть!»

Секрет прост: в нашем институте разработана технология обработки синтетических тканей в низкотемпературной паровоздушной плазме, создаваемой электрическим зарядом. Она-то и наделяет ткань способностью впитывать влагу. Эта способность сохраняется даже после пятнадцати-двадцати стирок.

На этой же основе мы разработали и синтетическую вату для медицинских целей. Как и натуральная,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату