фотографическое изображение всего звездного неба, видимого с Земли! Если в предыдущих версиях Starry Night, как и во всех прочих астрономических программах, мы имели дело с векторной симуляцией, то теперь видим так называемую AllSky CCD mosaic - цельную панораму неба, составленную из двадцати тысяч снимков, сделанных мощнейшим телескопом, размером 6,44 млрд. пикселов (съемка велась с разрешением 12 арксекунд на пиксел)! Просмотр любого уголка Вселенной возможен на пяти уровнях зуммирования, открывающих совсем уж неописуемые зрелища: как вам 24-битная цветная фотокарта всей поверхности Марса, снятая с высоты полета космического зонда? Или матушка Земля с разрешением до 1 км (здравствуй, GoogleEarth!)? Неудивительно, что пять лет усилий, направленных на создание нового революционного релиза, отлились в 11 Гбайт информации, ложащейся божественно желанным грузом на жесткий диск.

Специально не дописываю последнюю тысячу знаков 'Голубятни', оставляя место для лишнего скриншота!

ТЕХНОЛОГИИ: Великие раскопки и великие вызовы

Автор: Леонид Левкович-Маслюк

Наука об извлечении содержания из гигантских массивов данных становится все более изощренной, а задачи, за которые берутся мастера такого поиска, - все более человечными.

ЦИФРА

Агентство IDC прогнозирует, что объем цифровой информации в мире достигнет тысячи экзабайт к 2010 году,

то есть по сравнению с 2006 годом увеличится в 6 раз (1 экзабайт = 260 байт, или

миллиард гигабайт).

Прочесыванием гор информации в поисках скрытых в них закономерностей люди занимаются уже многие века. Но только с появлением компьютеров, баз данных, локальных и глобальных сетей понятие 'больших массивов' обрело нынешний смысл, а их вдумчивое сканирование, когда-то занимавшее лишь шпионов и каббалистов-мистиков, позже - социологов культуры и теоретиков медиа с их страстью к контент-анализу, превратилось в индустрию. Причем индустрию высокотехнологичную даже на фоне инфотеха. Ведь найти смысловые связи в новостной заметке, правильно ответить на элементарный вопрос - о чем она, к какому тематическому классу ее причислить, - сложнейшая, как оказалось, задача для машины. С другой стороны, даже простая для машины, но неподъемная и невыносимо тоскливая для человека задача механического сканирования текста с одновременной сортировкой имен, названий, ключевых слов часто оказывается очень и очень востребованной. А если еще и выйти за пределы мира текстов, попытаться научить компьютер понимать, о чем люди говорят (хотя бы в телефонных переговорах с туристическим бюро), что они показывают друг другу на фотографиях и видеолентах, - станет ясно, что колоссальный спрос на результаты таких исследований сталкивается с колоссальными трудностями в их реализации.

Вот где-то между этими молотом и наковальней и зародился современный датамайнинг (data mining, буквально - раскопки данных, или добыча чего-то из данных), в котором научные и индустриальные компоненты трудно разделить. В 1998 году научную зрелость этой отрасли подтвердило создание Special Interest Group (SIG), Группы особых интересов, в рамках авторитетной международной организации по компьютерным исследованиям ACM (Association for Computing Machinery, Ассоциация по вычислительным машинам).

Что такое SIG? Вспомним о самой популярной из подобных групп - SIGGRAPH. Ежегодные мегаконференции, на которых делаются доклады, читаются лекции и демонстрируются высшие достижения компьютерной графики, анимации и сопутствующей всему этому математики, других наук и технологий, известны далеко за пределами сообщества специалистов. Другие SIG’и (сейчас их тридцать четыре, в том числе SIGART [искусственный интеллект], SIGMOD [базы данных], SIGPLAN [языки программирования], SIGSOFT [разработка ПО] и др.) не так знамениты среди широкой публики, но заслужили уважение специалистов, а проводимые ими конференции, издаваемые журналы являются индикаторами качества в своих областях.

На наши вопросы о теории и практике датамайнинга ответил Григорий Пятецкий-Шапиро (Gregory Piatetsky-Shapiro), основатель и председатель SIGKDD - Группы особых интересов, посвященной 'открытию знаний в данных' (Knowledge Discovery in Data).

ОЦЕНКА

Удачные статистические модели позволили выявить потенциальные 'налоговые убежища' обеспеченных американцев объемом в сотни миллионов долларов.

Какие новые разделы датамайнинга (ДМ) появились в последние годы? Какие из них самые перспективные для бизнеса, для исследовательской работы?

- Одно из замечательных новых полей исследований - анализ связей (link analysis). Приложения весьма обширны, от биоинформатики до выявления преступлений, от маркетинга до исследования социальных сетей. Вокруг Web 2.0 сейчас столько шума именно потому, что он очень эффективно использует веб как инструмент социальных связей, - а это придает все большую значимость анализу этих связей.

Огромный прогресс виден и в майнинге текста (большинство программных комплексов [suites] для датамайнинга теперь включают компоненты для текст-майнинга), а также в майнинге мультимедиа. И то и другое - прекрасные области для исследований.

Датамайнинг широко применяется в больших компаниях, особенно работающих в электронной коммерции. Amazon, Yahoo - примеры таких компаний (мой коллега Усама Файяд занимает должность руководителя по обработке данных [Chief Data Officer] в Yahoo, он первым в индустрии е-коммерции получил такой титул). Вот неполный список областей применения датамайнинга:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату