предложили различить на картинках с двадцатью оттенками синего, какой из трех квадратов имеет отличную от двух других яркость. Русскоязычные справлялись с этой задачей в среднем на десять процентов быстрее. Но когда добровольцам предложили одновременно повторять в уме восьмизначное число, шансы у всех сравнялись. Это, по всей видимости, подтверждает лингвистическую природу более быстрого различения оттенков синего русскими (необходимость удерживать в памяти длинное число нивелирует преимущества в распознавании цвета).
По мнению авторов, результаты экспериментов свидетельствуют в пользу гипотезы, сформулированной еще в тридцатые годы прошлого века Бенджамином Уорфом (Sapir-Whorf Hypothesis), согласно которой структура языка определяет структуру мышления и способ познания внешнего мира. Причина успеха русскоязычных не в том, что говорящие на английском люди хуже различают цвета, а в том, что мыслящие на русском не могут избежать необходимости отличать синий от голубого.
Однако не все специалисты согласны с этими выводами. Возможно, в интерпретации экспериментов перепутаны причина и следствие. Для голубого и синего цвета есть два разных слова только в пяти процентах всех языков. И все эти языки принадлежат народам, живущим в высоких широтах. Только суровый северный климат делает живущих там людей экспертами в различении оттенков синего неба. А у многих народов, живущих ближе к экватору, нет даже разных слов для синего и зеленого цветов. По-видимому, это связано с тем, что их глаза 'обожжены' ярким солнцем экватора. Так что, возможно, наоборот, физические условия жизни определяют набор слов нашего языка, а отнюдь не язык формирует наше восприятие мира. ГА
Новый многообещающий нанокомпозит с высокой диэлектрической проницаемостью (high-k) удалось изготовить в Технологическом институте Джорджии. Материал позволяет удвоить емкость конденсаторов и значительно улучшить параметры органических транзисторов и пластиковых электронных устройств.
Как известно, емкость конденсатора и ток через открытый полевой транзистор прямо пропорциональны диэлектрической проницаемости k используемых в них диэлектриков. Если у обычного для транзисторов компьютерных чипов диэлектрика - диоксида кремния k=3,9, то у таких материалов, как оксиды гафния и циркония, а также у титаната бария, диэлектрическая проницаемость больше почти в шесть с половиной раз. Это позволяет при прочих равных условиях изменить геометрию транзистора и значительно снизить токи утечки и рассеяние тепла (см. 'КТ' #673). Однако вырастить изолирующие пленки из этих капризных материалов технологически очень не просто, и, кроме того, например, у титаната бария слишком мало напряжение электрического пробоя, тогда как у многих полимеров оно в несколько тысяч раз больше.
Чтобы решить эти проблемы, исследователи изготовили композит из поликарбоната - дешевого полимера, который давно используют для изготовления оптических дисков и конденсаторов, внедрив в него наночастицы титаната бария. В таком композите при равномерном распределении наночастиц диэлектрическая проницаемость может достигать 20, а напряжение пробоя снижается лишь незначительно. Беда в том, что при простом смешивании с пластиком наночастицы стремятся слипнуться в кластеры микронных размеров, что нарушает однородность изолирующей пленки и способствует пробою. Тем не менее ученым удалось