атомов алюминия и кислорода и тем самым снижать скорость диссоциации воды.

Разработчики нового метода утверждают, что им удалось преодолеть эти трудности. Их технология основана на реакции, которую еще сорок лет назад открыл руководитель коллектива Джерри Вудолл (Jerry Woodall), ныне заслуженный профессор Школы электрических и компьютерных технологий Университета Пэдью. В 1967 году он случайно заметил, что горячий жидкий сплав алюминия и галлия при контакте с водой вызывает бурное образование водорода. Тогда этот результат его не слишком заинтересовал, поскольку для нагрева сплава требовалось слишком много энергии. Однако в ходе последующих исследований Вудолл обнаружил, что вода хорошо разлагается, если ее пропускать через слой мелких твердых гранул, изготовленных из этого сплава. При этом галлий выполняет двойную роль. С одной стороны, он усиливает реакционную способность алюминия, а с другой - препятствует возникновению оксидных пленок. Возникающая окись алюминия просто смывается с поверхности гранул и накапливается в отстойнике. Очень важно, что при этом не образуется токсичных веществ.

Можно предположить, что сплав Вудолла при контакте с водой не создает на поверхности прочную окисную пленку из-за того, что галлий инертнее алюминия и практически не реагирует с кислородом при нормальной температуре. Поэтому вода проникает к атомам алюминия беспрепятственно. Такое возможно лишь при правильном подборе композиции сплава. Все дело в том, что атомы алюминия не должны быть настолько связаны с атомами галлия в решетке, чтобы потерять свою способность к реакции с водой.

Профессор Вудолл полагает, что со временем автомобили можно будет заправлять обычной водопроводной водой и подавать ее в газогенератор. По его расчетам, общий вес алюминиево-галлиевых гранул, обеспечивающих горючее для 500-километрового пробега среднего легкового автомобиля, не превысит полутора сотен килограммов. Правда, в настоящее время полученный таким образом горючий газ еще не может конкурировать с бензином. Хотя галлий очень дорог, этот металл практически не реагирует с водой и может вновь и вновь извлекаться из отходов (кроме того, массовое применение новой технологии скорее всего приведет к появлению более дешевых способов получения галлия). Однако нынешняя стоимость алюминия такова, что полученное с его помощью водородное горючее себя не окупает. Тем не менее Вудолл полагает, что алюминий удастся значительно удешевить посредством усовершенствования технологий его электролитического восстановления из окиси с использованием электричества, произведенного ветровыми турбинами или ядерными станциями.

Предложенная методика, конечно, не решит энергетические проблемы человечества, но если надежды исследователей оправдаются - поможет уменьшить объем вредных выхлопов, по крайней мере в местах сосредоточения автомобилей (не следует забывать, что большую часть электроэнергии мы по-прежнему получаем из ископаемого топлива). АЛ

Спинтронные пули

Спинтронное устройство на основе кремния впервые удалось изготовить физикам из Университета штата Делавэр в Ньюарке и Кембриджской фирмы NanoTech. Ученые 'впрыснули' электроны с одинаково ориентированным спином в слой кремния и управляли ими в полупроводнике. Эта демонстрация возможностей кремния делает появление спинтронных компьютеров еще на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату