биологического прототипа, оптимизированную для крепления мышечных клеток в тех же позициях, в которых они расположены у реального червя. Мы первые предложили 3D-модель мышечной системы C. elegans, в которой каждая мышечная клетка (из 95) реального организма будет иметь свой аналог.

Геометрические и механические свойства воспроизведены максимально точно, включая позиции нейронов и архитектуру связей между ними.

Для этого есть ряд существенных причин. Из-за особенностей строения нейронов C. elegans для их моделирования требуется учитывать в расчётах реальные пути соединений между нейронами, изменение сигнала вдоль них и время его распространения. Наша концепция удовлетворяет этим требованиям и предоставляет идеальный способ визуализации структуры межнейронных соединений, включая нелинейные участки и области ветвления, а также отображения динамики нейронной активности.

Для этого линейное соединение между каждой парой нейронов будет заменено на ряд последовательных сегментов, задаваемых системой промежуточных точек, которые будут повторять ход реального соединения. Каждая такая точка одновременно будет выполнять роль «передаточной станции» для расчёта затухания сигнала и обеспечения необходимой задержки по времени, а также в соответствующей ситуации может стать точкой ветвления.

Данные для внесения информации такого рода в модель в основном извлекаются из микрофотографий нейронов, что является трудоёмким процессом. Один из этапов в рамках этой задачи нам удалось максимально упростить посредством создания визуального 3D-редактора нейронной сети.

В результате нам пока удалось «запустить» лишь около 10-15 процентов всей нервной системы, преимущественно относящейся к вентральному нервному корду (брюшной нервной цепочке), управляющему мышечной системой и обеспечивающему базовую двигательную активность (синусоидальное поступательное движение вперед или назад).

Мы уже можем наблюдать реалистичное поступательное движение вперёд, его смену на противоположное движение при касании преграды (пока посредством искусственного переключения фазы синусоидального сигнала, подаваемого на мышцы).

Ещё наша нематода «умеет» поворачиваться на 90° и продолжать движение вдоль препятствия. Более сложные движения и поведенческие паттерны (изменение скорости или направления, повороты, поисковое поведение, реакция избегания раздражителя и т.д.) достигаются при участии дополнительных сигналов из головного нервного ганглия, до полноценной работы которого в рамках модели ещё далеко.

Возможность реализации сенсорной системы заложена в симулятор и запланирована, однако пока это одна из наиболее сложных частей задачи, так как практически неизвестна кодировка сигналов от рецепторов. Необходимы подробные консультации со специалистами, изучающими нервную активность этой нематоды экспериментально. Над налаживанием контактов и сотрудничества с исследовательскими группами, работающими в этой области, мы сейчас тоже работаем.

- Каким будет следующий шаг?

- Несмотря на серьёзный задел, даже для полного моделирования нервной системы C. elegans потребуется ещё немало поработать. Прежде всего, необходимо развивать методологию моделирования биологических нейронных сетей и уточнять и усложнять модели нейрона и межнейронных соединений и взаимодействий. Это будет происходить по мере продвижения проекта и получения новой информации, в том числе в результате сотрудничества с коллегами, изучающими нервную систему C. elegans экспериментально. Кроме того, мы планируем улучшить программный инструментарий для обеспечения высокой эффективности работы со средой моделирования.

Следующий шаг — последовательная настройка, изучение и «отладка» отдельных фрагментов нейронной сети, в том числе на основе опубликованной информации об исследовании или моделировании этих фрагментов, которую ранее было невозможно проверить на практике из-за отсутствия действующей модели организма.

Несмотря на то что архитектура нейронной сети C. elegans известна, многие механизмы её работы до сих пор не объяснены. Для некоторых фрагментов нервной системы существуют предполагаемые объяснения их механизмов действия и теоретические модели, а для многих и вовсе отсутствуют. Все они требуют проверки, которая может быть проведена как раз с помощью многофункциональной интерактивной среды моделирования, созданию и использованию которой посвящён наш проект.

Если мы сможем всё это сделать, далее мы планируем ввести в модель известные данные, касающиеся сенсорной системы, и подключить её к нервной системе.

— Какие ещё интересные исследования ведутся в этой области?

- Один из наиболее масштабных проектов — The Blue Brain Project, начатый в 2005 г. с моделирования фрагмента неокортекса (новая кора головного мозга, отвечающая за высшие нервные функции) крысы, построенного на результатах 3D-оцифровки 10000 нейронов и 3•107 синапсов реальной нервной ткани.

Для накопления этой информации потребовалось пятнадцать лет кропотливой экспериментальной работы. Исследователи успешно завершили эту фазу и перешли к следующей — моделированию фрагмента неокортекса человека. Это очень смелый, амбициозный проект, однако многое здесь пока непонятно. Например, не всё ясно с входной и выходной информацией, поступающей в этот фрагмент, непонятна роль связей неокортекса с другими отделами мозга, которые пока отсутствуют в симуляции. Неясно также, как в таких условиях понять, правильно работает этот фрагмент или нет.

Существующий на данный момент в виде модели фрагмент мозга человека эквивалентен примерно 1/10000000 части целого мозга. Таким образом, здесь мы видим попытку подойти к проблеме изучения принципов работы нервной системы с другого конца: вместо моделирования простейшего существа, наоборот, взяться за самую сложную существующую нервную систему, но смоделировать малый ее фрагмент.

Среди важнейших достижений стоит отметить разработанную в 2007 г. в Массачусетском технологическом институте технологию оцифровки структуры нервной ткани с высоким разрешением (MIT Technology Review).

Есть ещё один подход к этой же проблеме, разработанный в 2010 г., называется он Array Tomography. По словам авторов, это «новый высокопроизводительный метод, предоставляющий беспрецедентные возможности для визуализации молекулярной архитектуры живой ткани при высоком разрешении». Он включает в себя следующие основные этапы: автоматическое выполнение ультратонких срезов ткани; создание массивов срезов, лежащих последовательно в одной плоскости; окрашивание препаратов и получение их изображений; компьютерная реконструкция трёхмерного изображения и затем пространственный (volumetric) анализ получившихся изображений.

Значительный интерес также представляет недавняя работа, опубликованная в октябре 2010 г. в журнале Nature. Ученые из Salk Institute for Biological Studies (San Diego, California) разработали систему, позволяющую одновременно отслеживать нейронную активность выходного слоя сетчатки по нескольким сотням каналов, реализованных в виде матрицы. Эта матрица обеспечивает как весьма высокое пространственное разрешение, сравнимое с размером одиночного нейрона, так и разрешение по времени, позволяющее за секунду осуществлять более десяти миллионов записей.

С помощью стимулирования места входа сигнала и скоростного считывания места выхода удалось определить схему подключения клеток и всю структуру нейронной сети глаза, формирующей визуальное восприятие мира. Это позволило исследователям воссоздать полную картину обработки информации на пути от попадания света на клетки сетчатки глаза до её поступления к волокнам зрительного нерва, ведущим к мозгу.

— А если мыслить глобально, к чему ведут исследования, которыми вы занимаетесь?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату