1 ГПа — это 10 тонн на 1 см2. Предел прочности отдельной нанотрубки, по некоторым данным, составляет 100 гигапаскалей. Но если сплести из них трос, то за счёт дефектов он существенно снизится. Если это действительно так, то выходит, что современный уровень развития материаловедения не позволяет построить космический лифт.

Проекты космического лифта

Существует множество проектов космического лифта, и все они мало отличаются от того, что предлагал Арцупанов, но теперь учёные исходят из того, что материалы из нанотрубок станут доступны. Вот, например, рецепт космического лифта по-индийски. Заместитель начальника индийского космического центра VSSC Сентхил Кумар на одном из научных конгрессов рассказал о проекте лифта, в основании которого будет высотное здание. К нему прикрепят трос из композитного волокна на основе углеродных нанотрубок. На втором конце будет расположен противовес, уходящий за пределы геостационарной орбиты. Кабину лифта разделят на две части: отсек для грузов и помещение для людей. Индийцы уже даже рассчитали скорость подъёмника — 200 км в час. Достигнет своей цели кабина за восемь дней. Правда, господин Кумар не пояснил, как его соотечественники предлагают решать проблему радиации, молний, ветров, метеоров и космического мусора.

Смелее всех фантазии оказались, пожалуй, у канадцев. Из всех предложенных проектов у них получился самый необычный вариант. Они решили, что можно сделать лифт в виде огромной надувной башни. Башню канадцы предлагают собирать из модулей. Модуль в данном случае означает три скреплённые между собой трубы двухметрового диаметра, надутые гелием или другим лёгким газом. Между трубами предполагается вертикальный «проход», по которому будет двигаться кабина. Чтобы не быть голословными, канадцы спроектировали модель лифта.

Пока им удалось построить башню высотой 15 километров, но как «дотянуть» её до низкой околоземной орбиты, остаётся открытым вопросом. Проблему углеродных нанотрубок учёные вообще обошли стороной и предложили плести трос из уже имеющихся материалов. Статью об этом можно проч итать в журнале Acta Astronautica.

Но больше всех идея космического лифта интересует американцев. Например, Лос-Аламосская национальная лаборатория (та самая, где была сделана первая атомная бомба) активно занимается этим вопросом. Её сотрудники предложили свой вариант космического лифта, правда, принципиально он ничем не отличается от большинства других. На экваторе предлагается расположить океанскую платформу. Трос сделают в виде ленты из углеродных нанотрубок. Подавать энергию к лифтовой кабине планируется с помощью мощных лазеров, которые с Земли будут «подсвечивать» панели, преобразующие энергию обратно в электрический ток.

В качестве троса американцы тоже предполагают использовать углеродные нанотрубки: «С открытием углеродных нанотрубок и их поразительных свойств время космического лифта не за горами. Можно провести аналогию с Трансконтинентальной железной дорогой. Её строительство началось сразу же, как только был разведан последний маршрут через горы Калифорнии. И я надеюсь, что космический лифт начнёт свою работу, как только будет создана лента из нанотрубок длиной в сто тысяч километров», — сказал учёный лаборатории Брайан Лобшер (Bryan Laubscher).

Пояса Ван Аллена

Ещё одна из предполагаемых проблем — это радиация. Как известно, у Земли, как и у других крупных планет, есть радиационный пояс. Самая опасная часть лучевых поясов приходится на высоту от 1 до 20 тысяч километров над Землей; соответственно, поднимаясь со скоростью 200 км в час, космический лифт проведёт в опасной зоне примерно три с половиной дня.

Лабораторная симуляция влияния пояса Ван Аллена на солнечный ветер, изображение из «Википедии»

Если содержимое кабины теоретически возможно защитить от облучения, так как протоны высоких энергий обладают не очень высокой проникающей способностью, то сам трос и внешняя сторона устройства всё же облучатся. Опять же на утолщение конструкции кабины для защиты от радиации уйдёт дополнительный материал, что скажется на её весе и соответственно толщине троса. Это, конечно же, отразится и на стоимости лифта. Радиация представляет немалую опасность для пассажиров, однако некоторые грузы вполне могут обойтись и без защиты.

Кориолис против

Эффект Кориолиса тоже может помешать строительству космического лифта. При подъёме сила Кориолиса будет тянуть его вместе с тросом в направлении, обратном направлению вращения Земли. Это изменит положение лифта и заставит его колебаться, подобно маятнику. Раскачивание троса скажется на скорости. Данный эффект проявляется тем сильнее, чем выше поднимается лифт. Как вариант решения этой проблемы инженер-механик Арун Мисра из Университета Макгилла предлагает снизить скорость подъёма лифта. Во-первых, пока не совсем ясно, действительно ли это поможет, а во-вторых, это увеличит срок путешествия до пятнадцати дней. Также непонятно, как учёные предполагают преодолеть деформацию и растяжение троса, которые будут происходить за счёт данного физического явления.

Решения

Конечно, ищутся и пути преодоления препятствий. Более других активность проявляет НАСА. Во- первых, сотрудники исследовательских центров американского агентства пишут теоретические работы. В целом их разработки почти не отличаются от того, что уже описано выше. Некоторые из них есть в открытом доступе, так что при желании их можно прочитать: The Space Elevator NIAC Phase II Final Report, The Space Elevator.

Во-вторых, существует интересный проект, Space Elevator Games, который сотрудники НАСА придумали для развития этой области. Space Elevator Games — это ежегодное соревнование, участникам которого предлагается сделать уменьшённую модель космического лифта. Лучшая работа оценивается сотрудниками НАСА и вознаграждается денежным призом.

Ролик НАСА о соревнованиях

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату