того же химического элемента имеют совершенно идентичные свойства, а также дано определение атомного веса элемента как отношения массы одного атома этого элемента к массе

') В его великом произведении «Гидродинамика».

одного атома водорода. Амедео Авогадро (1776-1856) в 1811 г. дал правило, названное его именем, согласно которому идеальные газы при одинаковых температуре и давлении содержат в единице объема одинаковое количество молекул.

Если отвлечься от излагаемой в главе 12 идеи Л. А. Зеебера о структурах кристаллов (1824 г.), то первой формой физической атомистики является кинетическая теория газов. Около 1850 г. уже была признана эквивалентность теплоты и энергии; в связи с этим и стали рассматривать теплоту как молекулярное движение. С другой стороны, опыты Жозефа Луи Гей-Люссака (1778-1850) в 1807 г., а также аналогичные измерения Дж. Джоуля в 1845 г. подтвердили независимость внутренней энергии идеальных газов от их объемов, что доказывало, кроме того, ничтожность сил, действующих между их молекулами. В 1856 г. Август Карл Кредитив 1857 г. Рудольф Клаузиус (1822-1888) были вынуждены приписать молекулам газов прямолинейные движения до момента, когда они сталкиваются между собой или со стенкой сосуда. Закон сохранения импульса требовал, чтобы давление газа было пропорционально средней кинетической энергии молекул с некоторым универсальным коэффициентом пропорциональности. С другой стороны, из закона Бойля-Мариотта - Гей-Люссака вытекало, что эта энергия пропорциональна абсолютной температуре, - фундаментальное положение, которое не ограничивается газами и, согласно современной квантовой теории, имеет большие исключения только при очень низких температурах. Одновременно было дано верное вычисление скорости движения молекул. Для молекул водорода при температуре в 300° К она получилась равной 1,9 • 105см/сек; эта величина была неожиданно высокой и, как вначале казалось, несовместимой с фактом медленной взаимной диффузии газов с их малой теплопроводностью; прямое измерение было произведено О. Штерном лишь в 1920 г. Но в 1858 г. Клаузиус показал, что в этих явлениях имели дело не столько со скоростью молекул,

сколько со средними длинами свободного пробега между двумя столкновениями. Затем в 1860 г. Джемс Клерк Максвелл (1831-1879) на основе собственных измерений внутреннего трения дал числовые значения этих средних путей, объяснившие медленность диффузии газов. В той же самой работе он избавился от произвольной гипотезы о том, что все молекулы обладают одинаковой скоростью, и сформулировал названный по его имени закон распределения скоростей. Доказательство этого закона было усовершенствовано впоследствии им самим и главным образом Людвигом Больц-маном (1844-1906) в 1868 г. Сначала закон был недоступен экспериментальному исследованию, и лишь в 1932 г. О. Штерн преодолел все возникшие здесь трудности. Вскоре этот закон стал исходным пунктом для многих обобщений, следствия которых, как мы это увидим дальше, подтверждались измерениями. Основная заслуга, разумеется, принадлежит Максвеллу.

В это же время были получены некоторые ценные результаты относительно размеров и числа молекул газов. Рассматривая молекулы простейших газов как шары, Иосиф Лошмидт (1821-1895) в 1865 г. вычислил их диаметр из средних длин свободного пробега и объема моля газа в жидком состоянии. Он нашел для радиусов молекул правильную величину порядка 10- 8см, а для числа молекул в моле 1023. Это число, которое теперь определено гораздо лучше, назвали числом Лошмидта.

Допущение шарообразности и твердости молекул являлось основой всей теории газов и, в частности, доказательства максвелловского распределения скоростей. Постепенно теория стала заниматься молекулами с внутренними степенями свободы, вращением и колебаниями атомов друг относительно друга. Она установила для этих явлений обобщенный закон распределения и вывела из него в качестве важнейшего следствия закон равномерного распределения: средняя кинетическая энергия любой степени свободы пропорциональна абсолютной температуре. Коэффициент пропорциональ-

ности - универсальная константа. Вычисление удельной теплоты многоатомных газов на основе этого закона дало результаты, полностью согласные с опытом. В применении к твердому телу закон, найденный в 1820 г. Пьером Луи Дюлонгом (1785-1838) и Алексисом Терез Пти (1791 -1820), гласит, что теплоемкость грамм-атома простого тела имеет одно общее для всех тел значение: 6 кал/град. Вместе с этим пришел ответ на вопрос, как распределяются в пространстве молекулы газа под влиянием внешних сил, например силы тяжести. Все это были фундаментальные знания, которые впоследствии оказали влияние на многие другие области.

Основные черты кинетической теории газов были, таким образом, даны. Ничто не изменилось в них, когда М. Кнудсен, используя успехи вакуумной техники, в 1909 г. изучил особые явления при разрежении газов настолько высоком, что не происходят столкновения между молекулами газа. До настоящего времени сохранили свое значение основные черты кинетической теории газов. Важные теоретические исследования Д. Энского (1911) и С. Чэпмена (1917) по термодиффузии и последовавшее в том же году экспериментальное открытие этого явления С. Чэпменом и Ф. В. Дутсоном (1917); открытие К. Клаузиусом и Л. Вальдманом в 1943 г. обратного эффекта, относящегося к тепловым явлениям, связанным с диффузией двух газов, - все эти открытия полностью согласуются с основами, заложенными Клаузиусом, Максвеллом и Больцманом *).

Эти основные черты кинетической теории газов связаны с ньютоновской механикой. Однако с этой теорией в физику вводится и нечто совершенно новое: точка зрения вероятностного рассмотрения. Изучение

*) Термодиффузию в жидкостях наблюдал уже в 1856 г. Карл Людвиг (1816 -1895) и в 1880 г. Чарльз Сорет (1854-1904).

зигзагообразных путей отдельных молекул было бы не только безнадежным, но также не имеющим научного значения предприятием. Важными являются средний свободный пробег, среднее число ударов, которые молекула испытывает в единицу времени. Давление и температура являются средними значениями для большого числа молекул.

Значение этой основной черты теории особенно ясно сознавал М. Планк, который концентрированно выразил ее в гипотезе «молекулярного беспорядка». Здесь мы видим преимущество метода Больцмана перед статистической механикой Джозайя Уилларда Гиббса (1839-1903), хотя она иногда проще и применяется не только к газам, а также ведет к закону равного распределения. Именно Больцман смог ввести в теорию газов основное различие между термическими и чисто механическими явлениями, которое неоднократно являлось аргументом против всякой кинетической теории. Механические явления по своей природе обратимы; каждое из них может так же хорошо протекать в обратном направлении; знак времени здесь не играет никакой роли. Наоборот, термические процессы по природе своей так же необратимы, как выравнивание двух различных температур (гл. 9). Если теория газов, опираясь на механику, все же указывает на необратимость этих и других явлений, то это основывается именно на гипотезе молекулярного беспорядка. Аналогия с принципом увеличения энтропии очевидна.

Вершиной дела жизни Больцмана явилась с 1877 г. все более ясно устанавливаемая связь между энтропией и вероятностью - одна из глубочайших мыслей всей физики. Этот принцип Больцмана утверждает: энтропия пропорциональна логарифму вероятности состояния системы, причем коэффициентом пропорциональности служит некий универсальный множитель - так называемая константа Больцмана. Числовое значение этой константы дал, правда, лишь в 1900 г. Планк (гл. 13). Увеличение энтропии, которое выражается вторым законом термодинамики, рассматривается как

переход ко все более вероятным состояниям. Но так как состояние максимальной вероятности близко к состоянию немного меньшей вероятности, то всегда будут встречаться -

Вы читаете ИСТОРИЯ ФИЗИКИ
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату