на 11 делится. 6 111 116: 11 = 555 556.

Заливисто залаял Пончик.

— Шесть часов, — глубокомысленно заметил Нулик. — Он всегда лает в это время.

— Не собака, а хронометр! — сказал Сева, взглянув на часы. — Пора возвращаться…

Ребята быстро прибрали лужайку (не оставлять же после себя мусор!), и мы двинулись к станции.

По дороге нам предстояло обсудить ещё один каверзный вопрос, который был задан Магистру при входе в пещеру: каковы наибольшее и наименьшее десятизначные числа, состоящие из всех 10 цифр?

— На этот вопрос отвечу я, — сказал президент.

Желание понятное: ведь камнем преткновения для Магистра на этот раз был нуль. Определяя наименьшее число, незадачливый математик подставлял нуль то в начало числа, то в конец, и все без толку. Нулик же поставил нуль тотчас же после единицы и получил искомое: 1023456789 — один миллиард двадцать три миллиона четыреста пятьдесят шесть тысяч семьсот восемьдесят девять. Лихо!

— Могу не только наименьшее, но и наибольшее написать! — расхвастался президент. — Вот, пожалуйста: 9876543210…

— Стоит ли? — возразил Олег. — Ведь это число и сам Магистр записал правильно. Лучше уж подсчитай, сколько вообще можно составить десятизначных чисел из всех десяти цифр. Ведь на этот вопрос Единички Магистр так и не ответил.

— Вот ещё! — заартачился президент. — Он не ответил, а я — мучайся.

На его счастье, как раз в это время подошла электричка.

Всю дорогу Нулик распевал какие-то карликанские песни, всем своим видом демонстрируя полную независимость от Магистра и его диссертации. И только при выходе на вокзальную площадь малыш вдруг спохватился:

— Чуть не забыл спросить: что такое софизм?

— Опоздал, брат, — сказал я. — Заседание закрыто. Так что уж подожди до следующего раза.

ДИССЕРТАЦИЯ РАССЕЯННОГО МАГИСТРА

В бочке — по океану!

Мы с Единичкой очень устали. Не столько от хождения по гористому острову, сколько от бесчисленных загадок, которые было не так легко разгадать. Даже мне. А ведь я умею рассуждать логически и, кроме того, великолепно знаю математику. Не то что Единичка. Впрочем, что с неё взять? Одно слово — Единичка! Пристала сегодня с вопросом: как побыстрее вычислить в уме разность квадратов двух чисел? И назвала два числа: 500 и 498. Найти разность их квадратов ничего не стоит! Беру сперва разность этих чисел: 500 минус 498 равно двум. А затем возвожу двойку в квадрат. Вот вам и ответ: четыре. Но Единичка, вместо того чтобы восхититься моей находчивостью, потянула меня в Музей самообслуживания — остров-то ведь необитаемый! И вот там мы увидели необыкновенный экспонат.

Представьте себе на маленьком зеркальце три крохотные чёрные точки. Когда мы посмотрели на них в лупу, то увидели, что это мухи, вернее, мушки — таких маленьких я никогда не видел! Но что произошло дальше… Единичка чихнула, и три мушки мгновенно поднялись в воздух. Первая полетела прямо на восток, вторая взмыла вверх по какой-то замысловатой спирали, а третья принялась кружиться вокруг острова — ни дать ни взять живой спутник! Но самое главное — они летели с различными скоростями. Я уже хотел наброситься на Единичку, ведь это по её милости мушки сорвались с места. Но, оказывается, Единичка тут ни причём: так было задумано. Рядом с зеркалом висела табличка с таким текстом: «Вычислите, через сколько минут после старта три мухи снова окажутся в одной плоскости, если скорость первой мухи вдвое больше скорости второй и втрое больше скорости третьей». Вот так вопрос! Как же я могу вычислить, через сколько времени мухи окажутся в одной плоскости, если скорости их неизвестны? Видимо, тут дирекция музея что-то напутала' Правда, Единичка пыталась ответить на этот вопрос, но сказала такую нелепость, что мне и повторять неловко.

Мы двинулись к выходу. Тут нас ожидал сюрприз. Каждому посетившему Музей самообслуживания разрешалось самому взять на память любую из медалей, развешенных тут же, на доске. На этих медалях были изображения учёных. На каждой стороне разные. Скажем, с одной стороны Эвкли́д, а на обороте Лобаче́вский. Или: Птолеме́й и Копе́рник, Исаа́к Нью́тон и Альберт Эйнште́йн. Но почему эти пары поместили на одну медаль, не понимаю! Что за идея — объединить Эвклида с Лобачевским, Птолемея с Коперником или Ньютона с Эйнштейном? Может, у дирекции не хватило материала и она решила использовать, так сказать, оборотную сторону медали?

Но хуже всего то, что снять эти медали с доски было совершенно невозможно: они висели на разноцветных ленточках, прикреплённых к доске. Чтобы снять медаль, ленточку надо было разрезать. Правда, тут же на столе лежали ножницы. Но какие-то странные: они легко раскрывались, а соединить их снова не было никакой возможности. К счастью, Единичка нашла инструкцию, где говорилось, что ножницы следовало раскрыть на определённый угол, притом с абсолютной точностью! Этот угол должен быть меньше развёрнутого угла ровно в «пи» раз.

Ну, Единичка, конечно, стала расспрашивать, что значит в «пи» раз? В школе она этого ещё не проходила. Я разъяснил, что «пи» — это греческая буква, вроде нашего русского «пэ». Буквой «пи» принято обозначать угол в 180 градусов. А так как развёрнутый угол тоже равен ста восьмидесяти градусам, то и выходит, что 180, делённое на «пи» (то есть на 180), равно единице! Значит, половинки ножниц нужно раздвинуть точно на 1 градус! Я так и поступил, но ножницы не сработали, вероятно, испортились! Пришлось уйти безо всяких сувениров. Жаль!

Я уже взялся за ручку двери, но дверь оказалась запертой. На ней висел замок. А в него была засунута свёрнутая трубочкой бумажка. Единичка немедленно (она все делает немедленно) прочитала: «Дверь ведёт на Апори́йскую дорогу. И хоть длина дороги всего-навсего 1 километр, никто за 25 веков не смог пройти по ней до конца».

А на обороте было написано: «Ключ находится у сторожа, в городе Эле́е. Номер телефона: одна вторая. Вызвать Зено́на. Просят зря не беспокоить».

Что значит «зря не беспокоить»? И что это за сторож, который живёт в другом городе? Пришлось позвонить этому Зенону. И вот какой разговор у меня с ним произошёл.

— Товарищ Зенон, — спросил я, — почему это никто не смог одолеть один несчастный километр вашей Апорийской… или как она там называется, дороги?

— Ясно почему, — ответил Зенон. — Надеюсь, Магистр (подумайте, он сразу узнал меня по голосу!), вы согласитесь, что тому, кто хочет дойти до конца пути, никак не миновать его середины?

— Что за вопрос! — возмутился я. — Как же можно дойти до конца, не пройдя середины?!

— В том-то и беда, — вздохнул Зенон. — Ведь когда вы дойдёте до середины пути, у вас останется ещё полпути. А у этого полпути тоже есть своя середина. И только вы дойдёте и до этой середины, как перед вами появится новая середина — середина оставшейся четверти пути. И так всё время! Сколько бы вы ни шли, перед вами всегда будет оставаться отрезок пути, а у него своя середина. Но вы же сами согласились, что, не одолев середины, нельзя дойти до конца. Вот и выходит, что одолеть Апорий скую дорогу невозможно!

Я так разволновался от этих рассуждений Зенона, что не сумел их опровергнуть. А тут ещё нас разъединили. Ох уж эти автоматические телефонные станции!

Но что было дальше!.. Единичка вытащила из своего кармана гвоздь (прямо как Том Сойер!), поковыряла гвоздём в замке, и… замок открылся! Я ахнуть не успел, как она выбежала на «непроходимую» Апорийскую дорогу и через несколько минут закричала издалека: «Я здесь! На самом конце!»

Молодец девчонка! Пристыдила-таки этого заумника Зенона.

Нет, что ни говорите, а странный остров ОАЗИС! Загадок на нём действительно много, а вот софизмов… что-то я ни одного не приметил. Может быть, эти самые софизмы перекочевали на другой остров?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату