— Какой такой Фаренгейт?

— Вот такой. Немецкий физик XVIII века. Он предложил термометр со шкалой, где точка таяния льда обозначена не нулём, как на градуснике Цельсия, а числом 32. А точка кипения воды — не 100, а 212 градусов. Эта шкала и до сих пор употребляется в Англии и Америке. И 28 градусов по Фаренгейту — это около двух градусов мороза по Цельсию. Не мудрено, что у Магистра озябли руки.

Нулик рассеянно гладил Пончика, который тоже заметно скучал и тихо поскуливал. Видимо, президента уже утомила чересчур интенсивная умственная деятельность, и он довольно вяло воспринял замечание Севы о том, что охотник, встреченный Магистром, никак не мог быть энтомологом, потому что охотился на зверей, а энтомолог — специалист по насекомым.

Между тем Сева заслуживал большего внимания: он прекрасно решил задачу о пойманных охотником зверях, приняв число жирафов за единицу, а число муравьедов за икс. И так как жирафов было больше, чем утконосов, во столько же раз, во сколько утконосов больше, чем муравьедов, то вышло, что утконосов было x2. Ну, а всего зверей в семь раз больше, чем жирафов. Следовательно, 1+x+x2=7. Отсюда x+x2=6.

Оставалось подумать, какое же число, сложенное со своим квадратом, может быть равно шести. Только двойка! 2+22=6. Тот же ответ можно получить, если решить по всем правилам квадратное уравнение x+x2-6=0.

Итак, Сева убедительно доказал, что жирафов было вдвое больше, чем муравьедов, а муравьедов вдвое больше, чем утконосов. А так как Магистр знал, что жирафов было 10, то ясно, что муравьедов охотник поймал 20, а утконосов — 40. А всего зверей оказалось 70. Но самое смешное, что, решив задачу. Сева тут же указал на её бессмысленность, потому что, оказывается, ни муравьеды, ни утконосы в Африке не водятся…

Разбором двух последних ошибок Магистра занялся Олег.

— Допускаю, — сказал он, — что Магистр мог по карте принять озеро Чад за прямоугольник и даже на глазок прикинуть, что стороны его равны 120 и 240 километрам. Но вот назвать сумму сторон прямоугольника не периметром, а параметром это уж ни в какие ворота не лезет! Ведь параметр-постоянная величина, которая может, впрочем, иметь в различных случаях разные значения. Вот, например, в полёте — космический корабль. Чем определяется его орбита? Его параметрами: наибольшим и наименьшим удалениями от Земли, наклоном орбиты, временем обращения вокруг Земли и так далее. Однако эти постоянные величины будут совсем иные при другом полёте. Хотя и в одном полёте космонавт может сам менять параметры своей орбиты.

— И, наконец, последнее, — продолжал Олег. — Магистр назвал луч ла́зера квазаром. Но ведь это же совершенно разные вещи!

— Кто бы мог подумать! — изумился президент. — Я бы ни за что не отличил.

— Положим, отличил бы, если бы знал, что квазар — невероятно отдалённый от нас небесный объект, а лазер — устройство для получения искусственного луча света.

— Искусственный луч! А зачем он нужен? Какая от него польза?

— Огромная, брат, польза. Тонюсенькая полоска уплотнённого, нерассеивающегося, невидимого света (как только его разглядел Магистр!) обладает, оказывается, невероятными, сказочными свойствами. Лазерный луч изобретён сравнительно недавно, что-то около десяти лет назад. Но он уже нашёл себе самое разнообразное применение. Лазерный луч режет тугоплавкие металлы. Лазерный луч заменяет хирургический скальпель и производит тончайшие глазные операции. Вскоре он заберётся в кинескоп телевизора. Он уже заменил телефонные провода. Волшебный луч!

— Но и опасный, — назидательно сказал Сева. — Им можно сжигать корабли, дома, разрушать крепости…

— Постой-постой, — остановила его Таня, — кто это тебе все рассказал?

— Да так. Один писатель.

— Конечно, современный?

— В том-то и дело, что не очень. Он уж лет двадцать пять, как умер.

Президент свистнул.

— Шутишь! Как же он про лазер узнал? Ведь тогда лазера ещё не было.

— А он и не знал. Он его выдумал. И описал в научно-фантастическом романе «Гиперболоид инженера Гарина».

— Ой, так ты про Алексея Толстого! — догадалась Таня. — У нас дома есть эта книга, да я все не удосужусь прочитать. Теперь уж обязательно прочитаю.

— Интересно всё-таки! — мечтательно сказал Нулик. — Человек выдумал книжку про какой-то фантастический луч. Проходит много лет, и вот уже луч изобрели взаправду.

— Что удивительного? — возразил Олег. — Жюль Верн мечтал в своих книгах о подводных лодках, о летательных аппаратах, телевидении, радио, полётах на другие планеты… И вот сегодня все это уже не фантастика, а действительность.

— Стоп! — сказал я. — Лирическое отступление закончено. А то в разговорах о лазере никак до квазаров не доберёмся. Впрочем, добраться до них действительно трудновато: ведь даже свет от них доходит до нас через много миллиардов лет.

Нулик вытянул трубочкой пухлые губешки.

— У-у-у, какие далёкие звезды!

— В том-то и дело, что не звезды. Сначала, правда, их принимали за звезды. Но потом отказались от этой мысли и стали именовать мнимыми звёздами. А мнимый — по-латыни «квази». Отсюда и название — квазары.

— Но если квазары не звезды, так что же они? — поинтересовалась Таня…

— Самые загадочные небесные объекты.

— Вот так точность!

— К сожалению, точнее ничего тебе сказать не могу. О природе квазаров спорят сейчас многие учёные, и когда они наконец доберутся до истины, тогда…

— Тогда мы вернёмся к вопросу о квазарах снова, — закончил за меня Олег. — А сейчас не пора ли нам прогуляться? Пончик прямо-таки извертелся!

И все заторопились в прихожую.

ПУТЕВЫЕ ЗАМЕТКИ РАССЕЯННОГО МАГИСТРА

На озере Чад

Очень сожалею, друзья, что вы не можете вместе с нами полюбоваться красивейшим озером Чад. Мы с Единичкой захотели прокатиться по нему на каком-нибудь мощном теплоходе, но почему-то все судёнышки здесь совсем маленькие, и ни один капитан не выразил желания покатать нас. К счастью, местные жители — чады — предложили нам прелестную плоскодонку, выточенную из баобаба. Дно её представляло собой правильный пятиугольник. Чады сказали, что дарят пятиугольник только друзьям, а символ дружбы скрыт в самой плоскодонке и нам надлежит его разыскать. К этому они добавили, что обычай одаривать друзей плоскодонками восходит к временам Пифагора, который тоже когда то плавал по озеру Чад. Что ж, поищем символ дружбы, спрятанный в пятиугольнике!

Когда мы с Единичкой уселись на наш «корабль», мне передали длинный-предлинный шест, который должен был заменить и весла и руль, потому что никаких других навигационных приборов на плоскодонке не было и в помине. Я оттолкнулся шестом от берега, и мы поплыли. По правде сказать, мне пришлось туговато, но всё же мы кое-как продвигались вперёд. А вот Единичка, вместо того чтобы помогать мне, занялась совершенно бесполезным делом — стала чертить на нашем баобабовом пятиугольнике диагонали. В конце концов у неё получилась какая-то удивительная фигура. Чем заниматься пустяками, поискала бы лучше символ дружбы. Но где там! Единичка достала из карманчика рулетку и стала измерять отрезки пересекающихся диагоналей, приговаривая при этом что-то непонятное: «Ай да золото! Ай да золото!» При

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату