— Гениально! Теперь сделаем в этом числе все возможные перестановки цифр. Напишем их сразу столбиком, а потом сложим:
Не желаете ли, ваше президентство, преобразовать эту сумму? — спросила Таня.
— Желаю, — отвечал его президентство без особого энтузиазма. — Я бы… я бы вынес 2 (
— Совершенно с вами согласна. Получится при этом
2(
— А это все равно что 222(
— Только то, что сумма перестановок зависит не от самого числа, а от суммы его цифр. И значит, все трехзначные числа с одинаковой суммой цифр в этом случае всегда будут давать одно и то же число.
— Ха-ха! — выдохнул президент, несколько подавленный роскошным Таниным доказательством. — Выходит, для всех трехзначных чисел с суммой цифр, равной двенадцати, ответ будет всегда 222*12, то есть 2664. Теперь хорошо бы ещё узнать, что получится, если взять четырех-, пяти- или двенадцатизначные числа…
— Да то же самое, — сказала Таня, — только численный результат будет другой.
— Обязательно займусь этим на досуге! Жаль, досуга у меня маловато, — проворчал Нулик, постукивая ногой об ногу и выразительно поглядывая на уютные окна кафе, мимо которого мы как раз проходили.
Это было понято, как безмолвный сигнал к атаке, и через мгновение мы уже находились внутри, за стеклянной дверью.
В кафе было тепло и, к счастью, безлюдно. Я говорю — к счастью, потому что Нулик, предвкушая лакомое угощение, взыграл и принялся носиться между столиками, описывая вокруг них замысловатые фигуры.
— Это я плутаю по лабиринту, — объяснил он, — скоро доберусь до мини-Тавра. Только вот где найти цепочку Афродиты?
Олег комически схватился за голову.
— Опять этот младенец повторяет ошибки Магистра!
— Ничуть не бывало! — выкрутился президент. — Просто я вас подначиваю. Из педагогических соображений…
Олег понимающе кивнул.
— Из педагогических, говоришь? Ну, тогда тебе, стало быть, известно, что произносить надо Минота́вр. И это тебе не мини, а совсем даже наоборот: огромное чудище. Получеловек, полубык.
— А разве такие бывают? — наивно спросил Нулик, сразу позабыв о педагогических соображениях.
— Если верить древнегреческому мифу, один, во всяком случае, имелся. В давние времена, на острове Крит, у царя Мино́са. Этот самый Минос построил на Крите такой лабиринт, что выбраться оттуда не было никакой возможности. Здесь и поселил царь своего прожорливого и свирепого человеко-быка, а в пищу ему отправлял провинившихся и обречённых в жертву богам людей. Плутая по запутанным коридорам, те в конце концов неминуемо попадали в пасть к Минотавру.
— Безобразие! — возмутился Нулик. — Неужели никто с этим чудищем не справился?
— Представь себе, такой человек нашёлся. Звали его Тезе́й.
— Тезей… — повторил Нулик, хихикнув. — Тезей-ротозей…
— То-то и оно, что не ротозей. Тезей сумел-таки разделаться с Минотавром и выбрался из лабиринта.
— С помощью цепочки Афродиты?
— Да нет, греческая богиня Афродита тут ни при чём. Помогла Тезею дочь Миноса — Ариа́дна. Она дала ему клубок ниток. Тезей как вошёл в лабиринт, так сразу стал разматывать этот клубок. А когда победил Минотавра, пошёл обратно вслед за нитью, сматывая её по пути. Так нить вывела его на свободу. Отсюда и пошло выражение «нить Ариадны» — нить, которая помогает выбраться из запутанных, затруднительных обстоятельств.
Президент озабоченно поджал губы.
— Теперь без катушки ниток в кармане шагу не сделаю! Мало ли что…
Опасения его были прерваны официанткой, которая спросила, что нам принести. Я заказал кофе, слоёных пирожков и трубочек с кремом.
Нулик опасливо зыркнул глазом.
— Боюсь, у меня на такой пир пресмыкающихся не хватит.
— Чего-чего? — недоуменно переспросил Сева.
— Ну, скарабеев, — объяснил президент и очень обиделся, когда все дружно захохотали.
— Нет, он меня уморит! — сказал Сева, утирая глаза. — Какие же скарабеи — пресмыкающиеся? Они же вовсе насекомые. Попросту навозные жуки. А их, между прочим, в Древнем Египте считали священными и потому изображали на кольцах, печатях, всяких амулетах. Считалось, что скарабей приносит счастье…
— Да ну?! — Президент даже подпрыгнул. — Хочу скарабея, хочу скарабея!.. — затараторил он, как Буратино.
Пришлось мне призвать его к порядку:
— Ты где находишься?
— В кафе.
— Так и веди себя соответственно. А хочешь говорить, так говори что-нибудь дельное. Вот хоть разберись в задаче со скарабеями.
Но охота говорить у президента почему-то разом прошла, и за дело взялся Сева. Выступление его было кратким — оно и понятно: он решал задачу алгебраическим способом.
— Число скарабеев, принесённых Черным Львом, обозначим буквой
— …(
— Верно. А так как у Мистера-Твистера Джерамини отнял в три раза больше скарабеев, чем у Чёрного Льва, число это равно 3
Нулик надулся.
— Да, оставили мне самое неинтересное…
Но всё-таки обиженно засопел над блокнотом:
— Переносим неизвестные в одну часть равенства, а известные — в другую. Тогда 2
— Так, — кивнул Сева. — А какую часть своей добычи отдал Шейк-Твист?
— Не беспокойся, подсчитаем и это! — бодро пообещал Нулик. — Если x=1/2