давления, направленная вверх, не будет уравновешена, и сосуд начнет подниматься (рис. 9).

Рис. 9. Предполагаемый вид паровой ракеты Перкинса

Если отклониться от хронологической последовательности в изложении материала, можно найти прекрасную иллюстрацию этого принципа в «паровых ракетах», на которые 15 мая 1824 года получил патент Джеймс Перкинс из Лондона. Ракета Перкинса состояла из металлического резервуара, частично наполненного водой. Круглое отверстие в его дне закрывалось легкоплавкой металлической пробкой. Весь резервуар устанавливался над пылающим костром. Вскоре тепло превращало воду в пар, давление которого непрерывно нарастало до тех пор, пока не расплавлялась пробка. Тогда пар начинал с огромной силой выходить наружу, и ракета взлетала в небо. Неизвестно, Для какой цели строил Перкинс свои «паровые ракеты», но можно быть благодарным ему за то, что он так просто и наглядно показал принцип реактивного движения.

Теперь можно перейти и к объяснению Третьего закона движения, который гласит, что всякое действие сопровождается равной, но противоположно направленной реакцией. Поясним это положение следующим простейшим примером: представьте себе лягушку, сидящую на куске дерева, который плавает по тихому озеру. Лягушка весит 1 унцию (28,3 г), столько же весит кусок дерева, поэтому ничего особенного не происходит до тех пор, пока лягушка ие замечает на некотором удалении от себя муху. Она сильно подпрыгивает, стремясь достать муху, но в то же время кусок дерева отходит в другом направлении, противоположном направлению прыжка лягушки. Предположим, что в данном случае отсутствует сопротивление воды, тогда дерево отойдет от первоначальной точки на такое же расстояние, что и лягушка. Если лягушка, отталкиваясь от куска дерева, пролетит по воздуху расстояние в 1,2 м , то и кусок дерева передвинется на 1,2 м, но в противоположном направлении, причем оба тела, имея равные массы, будут двигаться с одинаковой скоростью (рис. 10).

Рис. 10. Третий закон движения

В этом примере лягушка свободно заменяется ракетой, а кусок дерева — пороховыми газами. Газы при истечении из сопла ракеты отбрасывают ее в противоположном направлении, и это происходит не только в воздухе, но и в безвоздушном пространстве; это явление не имеет никакого отношения к «отталкиванию от воздуха».

Именно сила реакции отбрасывает ствол орудия назад, когда снаряд и струя мгновенно и бурно расширяющихся пороховых газов вылетают из него. Именно эта сила опрокидывает стул, когда кошка прыгает с его спинки на книжную полку, или отталкивает вашу лодку обратно в реку, когда вы прыгаете с нее на берег.

Теперь нужно сказать о том, что масса, создающая реактивную силу, которую мы хотим использовать для движения, должна складываться из очень большого количества частиц с небольшой массой. В примере с лягушкой вся система была разделена пополам, в результате каждая половинка приобрела половину скорости. Если бы на нашем куске дерева сидело несколько маленьких лягушек, окончательный результат был бы лучшим: та же самая скорость была бы достигнута при затрате меньших «рабочих масс». Если вам нужна система для получения полной заданной скорости «истечения», можно всякий раз выбрасывать по половине, по четверти и даже по меньшей доле первоначальной массы.

Обозначим остающуюся массу через i, тогда весь вопрос будет заключаться в том, какой должна быть первоначальная масса. Ответ на этот вопрос дается в следующей таблице:

Понятно, что масса молекулы газа, выбрасываемого настоящей ракетой, гораздо меньше тысячной доли первоначальной массы ракеты. Следовательно, в приведенной таблице придется сделать еще одну строчку для «бесконечно малых» частиц, для которых первоначальная масса окажется равной 2,7182. Это число хорошо известно математикам, обозначающим его буквой «е».

Подводя итог сказанному выше, можно сделать четыре следующих вывода:

1. Движение ракеты не обусловлено отталкиванием от окружающей среды; в действительности последняя только создает сопротивление движению как самой ракеты, так и газов, истекающих из сопла. Поэтому, чем меньшую плотность имеет окружающая среда, тем больше коэффициент полезного действия ракеты. Самым выгодным условием для движения ракеты является полное отсутствие окружающей среды, то есть вакуум.

2. Продукты сгорания ракеты должны состоять из возможно более мелких частиц; обычно так оно и бывает, ибо эти продукты, как правило, являются газообразными.

3. Скорость ракеты можно повысить либо путем увеличения массы истекающих продуктов сгорания, либо путем повышения скорости их истечения, причем последнее всегда остается более предпочтительным.

4. Скорость ракеты может превысить скорость истечения продуктов сгорания. Скорость ракеты ограничивается, помимо внешнего сопротивления, только общей массой топлива.

Все эти положения фактически составляют то, что мы называем Третьим законом движения. Практическое его значение заключается в том, что движение ракеты зависит не от какого-то «таинственного» качества пороха, а единственно от создания определенной массы продуктов сгорания любого типа каким-либо приемлемым способом. А это означало, что таким способом можно приводить в движение летательный аппарат.

Используя эту идею, голландский профессор Якоб Биллем Грейвсанд создал для показа в классе небольшую движущуюся паровую реактивную машину. На рисунке, взятом из второго тома книги Грейвсанда (рис. 11), изображена металлическая сфера — сосуд, установленная на небольшой повозке. Под сферой, наполненной водой, находится жаровня; получаемый при этом пар выходит через длинную трубу назад. Говорят, что позднее профессор Грейвсанд пытался построить парореактивный автомобиль больших размеров.

Рис. 11. Паровая реактивная машина Грейвсанда

Между тем в 1718 году начальник полевой артиллерии курфюрста саксонского полковник Кристоф Гейслер выпустил книгу, в которой описал результаты некоторых интересных экспериментов, проведенных им еще в 1668 году близ Берлина. В его распоряжении были ракеты двух видов (весом 22,6 кг и 54,4 кг) с деревянным корпусом, который был покрыт парусиной, пропитанной горячим клеем. Топливом служила смесь 16,3 кг селитры, 7,3 кг серы и 5,4 кг древесного (липового) угля. Этот пороховой заряд плотно запрессовывался в корпус ракеты. Полезную нагрузку составляла 7,3-кг бомба.

Появление этой книги, по-видимому, пробудило интерес к ракетам у молодого поколения артиллерийских офицеров в Берлине, так как в 1730—1731 годах были проведены испытания 45-кг ракет. Согласно утверждениям некоторых авторов того времени[8] пиротехники разработали для таких тяжелых ракет четыре различные топливные смеси, состав которых в весовых частях был следующим:

Смесь № 1 была испытана в июне 1730 года капитаном Хольцманом и хорошо себя оправдала. Смесь № 2 испытывалась 17 июля того же года. Корпус ракеты весил 15кг, заряд—10,4 кг, направляющая—15 кг, головная часть вместе с полезной нагрузкой — 1,8 кг. В сумме стартовый вес ракеты достигал 42,2 кг. Она поднялась на довольно большую высоту. В том же, 1730 году была испытана смесь № 3, а в следующем году у Овечьего моста в Берлине состоялись испытания ракеты с топливной смесью № 4.

Если бы история развивалась так же логично, как некоторые стараются доказать, то, вероятно,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату