После этого, быстро сменяя друг друга, появились многочисленные статьи ученого; Циолковский чувствовал себя вознагражденным за свои труды. В 1932 году в день его семидесятипятилетия в газетах и журналах были опубликованы большие статьи о его жизни и деятельности. Умер Циолковский три года спустя, в 1935 году.
Глава пятая. Битва формул
По сравнению с тем, что имело место в XIX веке, а также с тем, что случилось позже, первые два десятилетия XX века выглядят в истории развития ракет довольно бесплодным периодом. Даже современникам должно было казаться, что в те годы в этой области сделано было немногое. В целом изобретатели ракет шли в своей работе тремя разными направлениями, но все они, по-видимому, не добивались никаких ощутимых результатов. Правда, оглядываясь назад, можно утверждать, что некоторые из этих разработок были весьма интересными, так как они заложили основу для более поздних изобретений.
Одной из таких значительных разработок был проект шведского подполковника фон Унге. Он предлагал создать новый тип военной ракеты — снаряд класса «воздух — воздух». Конкретное описание ее дается в главе седьмой.
Второй была попытка воздействовать на погоду, или, скорее, на определенное явление погоды; изобретатель говорил о возможности предотвратить с помощью ракет выпадение града. Впервые об этом стало известно на ежегодной конференции «Общества германских ученых и врачей» в 1906 году. Некий Баур, бывший инструктор в артиллерийском училище турецкой армии, прочитал доклад о своих экспериментах. Существо его предложения сводилось к тому, что облака, и особенно те, из которых выпадает град, можно, рассеять путем взрывов. Для этого нужно было, чтобы взрыв происходил внутри облака, а поскольку иметь в каждом районе современную артиллерию было весьма трудно, Баур разработал довольно простую в обращении ракету, которая могла достичь высоты 900 метров и более и нести мощный заряд взрывчатого вещества. Он утверждал, что ему неоднократно удавалось рассеивать ливневые облака (над тем районом, где он экспериментировал, в 1905 году не появилось, к сожалению, ни одного облака с градом), и добавлял, что некоторые испытательные запуски поздней осенью привели к любопытному явлению — местным снегопадам, которые удивили всех наблюдателей. Работа Баура вызвала большой интерес и продолжительную дискуссию; в соответствии с указанными им методами в Швейцарии были проведены первые эксперименты с противоградовыми ракетами.
Третье новое направление в развитии ракет выявилось на той же конференции 1906 года в докладе некоего А. Буярда, названном «Ракеты на службе фотографии». В докладе в основном разбиралась работа инженера Альфреда Мауля, который хотел использовать ракеты для целей войсковой разведки в качестве носителей фотокамер. Первая модель Мауля, испытанная в 1904 году, была снабжена пластиночной камерой с размером кадра 40 х 40 мм;она могла подниматься на высоту 270 — 300 м. Однако само получение фотоснимка было слишком редкой удачей: то не срабатывал затвор камеры, то не раскрывался парашют, возвращавший камеру на землю.
Мауль решил, что вся ракета слишком мала, чтобы быть достаточно прочной и надежной, и построил гораздо большую модель. Ее четырехметровая направляющая ручка имела в нижней части четыре квадратных стабилизатора, расположенных крестообразно. Корпус камеры (120 X 120 мм) и парашют крепились к другому концу направляющей ручки. В зависимости от требуемой высоты подъема система имела одну или несколько больших пороховых ракет. Ракеты такого типа применялись для подачи троса с берега терпящему бедствие кораблю. Интересной и полезной деталью было внесение девятиметрового троса между камерой и направляющей ручкой. Тяжелая направляющая ручка при падении вместе с пустым корпусом ракеты ударялась о землю первой; в этот момент у камеры, еще находившейся на высоте 9 м, раскрывался парашют, который, таким образом, не испытывал лишней нагрузки. Эта ракета поднималась на высоту 450 — 600 м. У следующей модели направляющая ручка была увеличена до 4,5 м. Камера могла делать снимки размером 180 х 180 мм. К направляющей ручке присоединялись две 80-мм пороховые ракеты. Стартовый вес системы составлял 25 кг, а скорость набора высоты — 480 м за 8 секунд.
Самая большая модель, изготовленная в 1912 году, была снабжена стабилизирующим гироскопом. Она достигла высоты 780 м. Ее стартовый вес составлял 42 кг. Камера делала снимки размером 200 х 250 мм. Ракета воспламенялась дистанционно и была абсолютно надежной; но к тому времени, когда проект был осуществлен, появилась возможность фотографировать местность камерой, устанавливаемой на самолете.
Вот фактически и все, что можно сказать о развитии ракет в период между 1900 и 1914 годами. Во время первой мировой войны ракеты, кроме обычных сигнальных, применялись случайно. Вероятная причина этого рассматривается нами в главе седьмой.
Рассвет «новой эры» ракет наступил с последним выстрелом войны. 26 мая 1919 года, через полгода после прекращения боевых действий, американец доктор Роберт Годдард, профессор колледжа Кларка в Уорчестере (штат Массачусетс) закончил писать небольшую брошюру, содержавшую всего 69 печатных страниц. Рукопись в основном была посвящена исследованию, о котором Годдард писал в Смитсонианский институт еще в 1916 году, настаивая на денежной помощи в ведущейся им работе. В приложениях сообщались данные о некоторых проведенных Годдардом испытаниях, а также основанные на них выводы. Брошюра была опубликована как труд Смитсонианского института за № 2540 и, хотя она датировалась 1919 годом, появилась в свет лишь в январе 1920 года. Эта работа была озаглавлена «Метод достижения крайних высот».
Основные соображения, из которых исходил Годдард, и основная цель, которую он имел в виду, ясны из первого же предложения книги. Раскрывая смысл заголовка брошюры, автор пишет: «Поиски методов запуска регистрирующей аппаратуры на высоты за пределами досягаемости метеорологических аэростатов (свыше 32 км) привели автора к разработке теории реактивного движения». Ни предмет брошюры, ни рассмотрение предмета автором не заинтересовали общественность вообще. Предмет брошюры заключался в исследовании, можно ли использовать ракету в качестве носителя научных приборов для изучения верхних слоев атмосферы. Рассмотрение было специальным, разбирался узкий раздел прикладной физики, формулировки были полны непонятных математических терминов; брошюра содержала многочисленные таблицы, текст был весьма сухим и сжатым. Но в самом конце брошюры имелось кое-что интригующее. Здесь на более или менее конкретном материале рассматривалась возможность запуска ракеты на Луну и взрыва там осветительного заряда.
Это уже могло быть пищей для прессы. Ракета, несущая странные приборы с неизвестной целью — одно дело. Но ракета, падающая на Луну и взрывающаяся там с такой вспышкой, что ее становится видно с Земли, — это уже нечто другое. К тому же идея исходила от человека, который преподавал физику, а до этого защитил диссертацию на степень доктора физических наук и являлся офицером ВМФ США, в системе которого работал над усовершенствованием сигнальных ракет.
Идея Годдарда, вероятно, вызвала некоторое волнение в газетах, но больших дискуссий в научных кругах, кажется, не возбудила; по крайней мере, я не мог найти в журналах ни одной полемической статьи по этому вопросу. В Европе брошюра также фактически оставалась долгие годы неизвестной науке. Неброское название работы, возможно, создавало впечатление, что в брошюре просто обсуждались новые технические достижения в области метеорологии, и потому она не вызывала интереса ни у кого, кроме специалистов-метеорологов.
В конце 1923 года издательство Ольденбурга в Мюнхене выпустило невзрачную на вид брошюру объемом менее 100 страниц под названием «Ракета как средство межпланетного полета». Автором ее был Герман Оберт. Предисловие к брошюре начиналось так:
«1. Современное состояние науки и технических знаний позволяет строить аппараты, которые могут подниматься за пределы земной атмосферы.
2. Дальнейшее усовершенствование этих аппаратов приведет к тому, что они будут развивать такие скорости, которые позволят им не падать обратно на Землю и даже преодолеть силу земного