над полюсами, 11 км на широте 50° и 18 км над экватором.
Примерно через 20 лет после Тейсерена де Бора было установлено существование над стратосферой очень разреженного слоя, наличие которого было предсказано еще доктором Хэлли. Вследствие того что этот слой подвержен ионизации космическими лучами, он был назван ионосферой, а слой, разделяющий стратосферу и ионосферу, стал по аналогии стратопаузой.
Большой проблемой того времени являлось создание совершенных приборов. Из года в год точность и надежность приборов неуклонно возрастали: они становились более чувствительными и портативными. Усовершенствовались и аэростаты, которые поднимались все выше и выше, сначала на 10000 м, потом на 15000—20000 м и выше.[33] Большим недостатком аэростатов, однако, была трудность их отыскания после приземления. Вероятность отыскания приборов аэростата, запущенного на большую высоту, и сейчас еще составляет не более 50%. Единственным выходом из этого положения является передача показаний приборов по радио. Этот способ сейчас называют телеметрией, и он получил широкое применение не только в шарах зондах, но и в исследовательских высотных ракетах.
* - Рекорд высоты для небольшого аэростата с резиновой оболочкой без экипажа был установлен 8 ноября 1930 года в Германии (35900 м). Большие аэростаты с мягкой оболочкой, используемые в США с 1947 года. достигают высоты 30 500 м, а в отдельных случаях—38 000 м. (Прим. авт.)
Принцип телеметрии был изобретен еще в 1877 году голландским механиком Олландом из Утрехта. Естественно, радио тогда еще не было, но Олланд использовал вместо него электрические провода. Для того чтобы понять этот способ, представьте себе обыкновенные часы с тремя стрелками: часовой, минутной и секундной. Допустим, мы решили телеметрировать береговую станцию, которая регистрирует направление ветра и высоту прилива. Соединяем часовую стрелку с флюгером и добиваемся того, чтобы цифра «12» точно соответствовала северу, цифра «6» — югу и т. д. Минутную стрелку мы связываем с поплавком с целью получения данных о высоте приливов и отливов, а секундную оставляем , свободной с тем, чтобы она совершала один оборот по циферблату в минуту. Проходя мимо цифры «12», секундная стрелка всякий раз будет замыкаться с нею, посылая кратковременный электрический импульс по проводам. Когда секундная стрелка пройдет мимо часовой стрелки, указывающей направление ветра, она даст электрический импульс несколько иной длительности. То же самое произойдет, когда она законтактируется с минутной стрелкой, сигнализирующей о приливах и отливах. Следовательно, на другом конце проводов мы получим короткие импульсы через определенные промежутки времени, когда секундная стрелка замыкается с цифрой «12». Это так называемый масштабный импульс, или импульс масштаба времени. Импульсы другой продолжительности дают фактические отсчеты по измеряемым параметрам. Остается только измерить промежуток времени, отделяющий их от масштабного импульса. Если провода заменить передатчиком, то мы получим то, что называется радиотелеметрией.
Впервые принципы радиотелеметрии были использованы в приборах, поднятых на аэростате, примерно в 1925 году , русским профессором П. А. Молчановым . Талантливый ученый создал так называемый гребенчатый радиозонд, в котором регистрирующие перья приборов скользят по особым зубчатым металлическим гребенкам, являющимся электрическими контактами. Эта система была первой в своем роде, и усовершенствовать ее не удалось никому.Были испробованы и другие методы, также давшие положительные результаты. Финский ученый — доктор Вильхо Вайсаала передавал по радио показания приборов путем изменения длины несущей волны. Американская система, разработанная сотрудниками Бюро стандартов Даймондом, Хинмэном и Дансмором, основана на принципе модулирования несущей частоты. В одном из современных американских радиозондов используются пластинка с концентрическими канавками и чувствительные приборы с рычагами, которые контактируются с соответствующими канавками через определенные промежутки времени. На каждой канавке с помощью азбуки Морзе записаны сигналы, которые передаются с паузами в следующем порядке: давление, температура, влажность.
Случилось так, что пути развития таких, казалось, далеко отстоящих друг от друга отраслей техники, как производство телеметрических электронных приборов и ракетостроение, сошлись вместе. Когда появились большие ракеты-носители, телеметрические приборы и системы уже существовали. Нужно было только правильно соединить их в одном комплексе. В ходе различных испытаний ракеты «Фау-2» телеметрировались не только показания приборов, относящиеся к полезной нагрузке ракеты, но и ряд параметров самой ракеты. Так, например, на ракете имелся манометр, оборудованный телеметрической системой, передававшей информацию о давлении в камере сгорания двигателя; второй такой же манометр отмечал давление в кислородном баке. Кроме того, на ракете были установлены тахометр, телеметрировавший скорость вращения турбонасосного агрегата, и группа приборов, дававших сведения о положении графитовых рулей.
Однако даже при наличии телеметрической аппаратуры некоторые приборы ракет, и в частности фотоаппараты и заснятую ими пленку, необходимо спасать. Иногда в ракету помешается мешок с семенами или коробка с мухами для определения влияния на них космических лучей. При этом не все приборы или предметы, подлежащие спасению, находятся в инструментальном отсеке (боевой головке) в связи с тем, что при падении на землю с высоты порядка 160 км ракета («Фау-2») почти полностью разрушается. Чтобы избежать этого, пришлось обратиться к парашютам.
Пустая ракета «Фау-2» весит 4 т, и если сделать парашют, который мог бы ее удержать, он займет весь внутренний объем ракеты, а может быть, даже и не поместится в ней. Парашют для одной боевой головки также оказывается слишком тяжелым и объемистым. Конечно, в ракете, предназначенной для сбора информации, можно сделать специальный парашютный отсек между приборным отсеком и топливными баками, однако в ракете «Фау-2» такого отсека не имелось.
Кто-то предложил тогда способ предотвращения приземления ракеты с большой скоростью без увеличения ее размеров. Согласно теории ракета с работающим двигателем летит головной частью вперед и должна сохранять такое положение на протяжении всей траектории. На самом же деле после прекращения работы двигателя ракета летит чуть ли не боком и даже медленно вращаясь вокруг продольной оси, что объясняется случайным неуравновешенным импульсом при последней вспышке в двигателе. Это не оказывает никакого влияния на траекторию, поскольку двигатель ракеты уже не работает, а воздух на высоте свыше 45 км слишком разрежен, чтобы оказывать заметное сопротивление ракете. По этой же самой причине и стабилизаторы почти не влияют на положение ракеты. Они снова вступают в действие только на высоте примерно 36 км. В этот момент они обязательно разворачивают ракету головной частью вниз независимо от того, в каком положении она находилась до этого, и ракета врезается в землю головной частью, подобно авиационной бомбе, но только с гораздо большей скоростью.
Если бы можно было предотвратить падение ракеты головной частью вперед, проблема спасения оборудования была бы в значительной степени решена. Это могло быть достигнуто путем сбрасывания либо стабилизаторов, либо боевой головки. Был выбран второй способ, поскольку значительно проще сбросить одну боевую головку, чем четыре стабилизатора, кроме того, этим достигалось более существенное снижение скорости падения. Ракета «Фау-2» без стабилизатора еще в достаточной степени обтекаема, тогда как без боевой головки ракета обтекаемостью, конечно, не обладает. Отделившаяся боевая головка падает весьма быстро, не подчиняясь никаким законам аэродинамики; корпус же ракеты оказывается в данном случае в несколько лучшем положении. Стабилизаторы до некоторой степени выравнивают корпус ракеты во время падения. Однако работа стабилизаторов затрудняется наличием открытой полости в головной части, откуда сброшена боевая головка. Оставшаяся часть ракеты не обладает никакой устойчивостью и падает настолько беспорядочно, что не может развить скорость, достаточную хотя бы для того, чтобы пробить мостовую.
Этот последний способ возврата на землю оборудования вполне оправдал себя и был назван методом «воздушного подрыва». При первой пробе на ракете «Фау-2» № 4 к каждому из четырех стрингеров ракеты в месте скрепления с боевой головкой было привязано по 450 г тринитротолуола. Когда радиолокатор показал, что ракета, двигаясь вниз, приближается к высоте 30 км, по радио был послан сигнал для подрыва этих зарядов. Заряды взорвались, однако наблюдатель, следивший за ракетой, сообщил, что она мгновенно окуталась облаком дыма, а затем вышла из этого облака невредимой и врезалась в землю, как обычно. Радиотелеметрическая запись также показала, что приборы продолжали работать и после подрыва зарядов.
На ракете, запущенной под № 6, все повторилось до мельчайших подробностей. Когда же устанавливалось оборудование на ракету № 9, специалисты из Лаборатории прикладной физики добавили к