гладкими. Большинство астрономов всегда считало их потоками затвердевшей лавы, очень удобными для использования в качестве посадочных площадок. Но недавно англичанин Томас Гоулд высказал предположение, что эти гладкие «моря» являются гигантскими чашеобразными углублениями, наполненными пылью. На поверхности Луны действительно много пыли, что частично объясняется постоянной бомбардировкой ее крупными, средними, малыми и мельчайшими метеоритами, а частично -  воздействием космических лучей. Однако все считают, что глубина этого слоя пыли не превышает нескольких дюймов. Если же верить Гоулду, то твердый «грунт» лунных «морей» может оказаться скрытым под слоем пыли толщиной более километра.

Если космическая ракета, запущенная в сторону Луны, пройдет мимо цели на сравнительно небольшом расстоянии от нее (менее 1600 км),то случится вот что: поле тяготения Луны притянет ракету, заставив ее некоторое время двигаться вокруг центра Луны по гиперболической орбите, однако вследствие большой скорости космической ракеты она не сможет стать спутником Луны, а совершит поворот вокруг Луны под острым углом и выйдет из сферы ее притяжения по траектории, являющейся ветвью гиперболы, направленной в общем в сторону Земли. Конечно, обратно на Землю эта ракета не попадет, хотя и пройдет от нее на небольшом расстоянии, но зато наблюдение за траекторией полета ракеты позволит с большой точностью вычислить массу Луны и подтвердить выдвинутую в прошлом гипотезу о наличии расхождения в положении геометрического центра и центра тяжести Луны. Если же космическая ракета будет достаточно большой, чтобы иметь на борту телевизионную камеру, мы сможем получить изображение невидимого с Земли полушария Луны[49].

Как отмечалось выше, спутник весом 10 т представлял бы собой уже целую обитаемую космическую станцию. Эта станция может иметь вид крылатой третьей ступени очень большой ракеты, и в этом случае запуск ее будет весьма сходен с запуском спутников по проекту «Авангард». Так же, как и они, космическая станция выводилась бы на орбиту и оставалась на ней в течение нескольких оборотов вокруг Земли, то есть около 6 или 12 часов, а может быть, и в продолжение целых суток. Затем пилот мог бы замедлить ее движение, включив тормозной ракетный двигатель, работающий на резервном топливе, в результате чего станция-ракета пошла бы на снижение, вошла в атмосферу по касательной и погасила бы излишнюю скорость, планируя вокруг нашей планеты. Несмотря на сильный нагрев ее поверхности, станция-ракета, по-видимому, вполне сможет совершить посадку, так как скорость при этом будет даже несколько ниже скорости посадки современных пассажирских лайнеров.

Появление пилота на космическом корабле сразу меняет всю картину. Целый ряд вопросов при участии пилота решается легче, так как человеческий разум помогает точнее разобраться в обстановке, чем это может сделать автоматическая аппаратура управления. К тому же человек весит значительно меньше сложных приборов системы управления. Если при возвращении в атмосферу температура корабля становится слишком высокой, пилот может снова вывести свой корабль за пределы атмосферы или попытаться уйти в теневой конус Земли с тем, чтобы быстрее излучить накопленное кораблем тепло. Короче говоря, присутствие пилота на космическом корабле дает очень много преимуществ. Но в то же время человек, находясь на космическом корабле, подвержен воздействию многих отрицательных факторов, для ослабления которого необходимо вносить изменения в конструкцию корабля.

Может ли человеческий организм выдержать те нагрузки, которые он испытывает при выходе космического корабля на орбиту и отклонении от нее?

Эта проблема в течение ряда лет усиленно изучалась отделом астромедицины министерства авиации на базе ВВС Рэндольф; возглавлял исследования доктор Губерт Штругольд - один из основоположников немецкой авиационной медицины.

Рассмотрим основные проблемы полета человека в космос. Прежде всего пилот должен выдержать значительные перегрузки при взлете ракеты. Затем, в течение всего полета, пока не начнется торможение, он будет находиться в состоянии невесомости, то есть при нулевом g. В космическом пространстве он и его корабль встретятся с опасностью воздействия космических лучей и столкновения с метеоритами. Кроме того, полет в космос связан с резкими температурными колебаниями и целым рядом других, менее существенных факторов.

Легче всего исследовать проблему влияния на человека больших перегрузок. Еще Оберт в одной из первых опубликованных им работ предлагал изучить сопротивляемость человеческого организма высоким перегрузкам с помощью большой центрифуги. Этот метод позволил тщательно исследовать и решить проблему перегрузок. Были составлены специальные таблицы, где значениям времени, необходимого для разгона ракеты до второй космической скорости (11,2 км/сек), соответствовали определенные значения возникающих при этом перегрузок. Из приведенной ниже таблицы становится ясно, что когда скорость нарастает медленно, то время для достижения второй космической скорости увеличивается, а перегрузка уменьшается, и наоборот.

Эта таблица неизбежно порождает вопрос, что будет легче для человека: выдержать небольшую перегрузку в течение долгого времени или перенести непродолжительную, но очень большую нагрузку?

Известно, что мелкие животные могут выдерживать большие ускорения, с человеком же дело обстоит хуже. Самыми высокими ускорениями, которые испытывает человек, являются ускорения, возникающие при крутых виражах и выводе самолета из пикирования на большой скорости. Еще в годы войны было установлено, что пилот с трудом переносит кратковременные ускорения порядка 4 g, а при 6 g теряет сознание. Ни один пилот не выдерживал перегрузки в 4 g продолжительностью в несколько минут.

Испытаниям на центрифуге подвергались только добровольцы. Чтобы исключить побочные влияния быстрого вращения, испытания проводились в темноте со слабо освещенным центром вращения, для того чтобы человек мог фиксировать на нем свой взгляд. В качестве дополнительной меры предосторожности кабина тренажера оборудовалась выключателем, дававшим испытуемому возможность в любой момент прекратить тест. Первые тесты с ускорением в 3 g подтвердили правильность теоретических предположений. Никто не пострадал, но все выражали сильное недовольство: испытуемые почему-то теряли всякое представление о времени. Затем были проведены тесты с перегрузками в 4 g. Ко всеобщему удивлению, испытуемые переносили их гораздо легче. Тогда людей подвергли тестам на 5 g, 6 g и так далее, вплоть до 10 g. Это было очень трудное испытание, однако люди выдерживали его, не теряя сознания. Один из пилотов подвергся даже невероятному испытанию - на перегрузку в 17 g в течение целой минуты и перенес его сравнительно хорошо.

Причина этого непонятного на первый взгляд явления была очень скоро найдена. Дело в том, что в самолете-истребителе летчик сидит прямо. Когда самолет выходит из пикирования, ускорение, которое испытывает пилот, направлено вдоль позвоночного столба и действует сверху вниз, вызывая усиленный отлив крови от головного мозга и связанную с этим потерю сознания. В центрифуге, так же как и в космическом корабле, ускорение направлено почти под прямым углом к позвоночному столбу человека, поэтому при испытаниях ощущается только большое напряжение, но распределение крови в организме существенно не меняется.

Условия этих испытаний были значительно более тяжелыми, чем условия реального космического полета. Ускорение сообщалось непрерывно в течение всего времени, необходимого для разгона ракеты до второй космической скорости (11,2 км/сек), хотя в действительности было бы достаточно разгона до 8 км/сек. При испытаниях ускорение было постоянным, но в условиях реального полета оно сначала будет довольно низким и только перед окончанием работы двигателей каждой ступени достигнет максимальных значений. На рис. 64 показан вычисленный фон Брауном график ускорений трехступенчатого космического корабля, способного выйти на орбиту спутника Земли. Проведенные по этому графику испытания показали, что человек переносит их довольно легко.

Рис. 64. Ускорения, возникающие при запуске трехступенчатой космической ракеты- корабля. Максимальное ускорение в 8- 9 g наблюдается в течение очень короткого времени

В действительности человек, который подвергнется воздействию ускорений согласно графику фон

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату