Рассмотрим простейший пример использования теории вероятностей для предсказания результатов в картах.
Перетасуйте и положите рядом две колоды карт рубашками вверх. Возьмите из одной верхнюю карту. Предположим, это оказалась восьмёрка. Какова вероятность того, что верхняя карта во второй колоде также восьмёрка?
Естественный ответ от здравого смысла — 4/32 (в колоде 32 карты, из них четыре восьмёрки). А если листать обе колоды до конца? Вполне логично ожидать, что совпадение карт по старшинству (две восьмёрки, две дамы, два туза и т. д.) произойдёт четыре раза, так как . Кстати, ответ не зависит от количества карт в колоде. Повторите опыт многократно, и вы получите экспериментальное подтверждение теории вероятностей. С увеличением числа опытов количество совпадений карт стремится к четырём. Значит ли это, что при однократном перелистывании колод будут совпадать всегда четыре карты? Безусловно, нет. Количество совпадающих карт теоретически может изменяться от нуля до тридцати двух. Но если вам на пари предложили угадать, сколько карт совпадёт, нужно ставить на совпадение четырёх карт. В данном случае это решение оптимизирует ваш выигрыш. При однократном перелистывании колод можно и проиграть. На длинной дистанции при многократном перелистывании колод победит тот, кто сделает ставку на совпадение четырёх карт.
1. Чему равно математическое ожидание совпадения карт по масти и по старшинству при одновременном перелистывании двух колод (две дамы пик, два туза треф и т. д.)?
2. Чему равно математическое ожидание совпадения карт по мастям при перелистывании двух колод по 32 карты в каждой?
Естественно, определение оптимальной тактики, обеспечивающей максимальный выигрыш при длительной игре в преферанс, базируется на более сложных соотношениях. Эту задачу можно разделить на два этапа. Сначала нужно определить вероятность повторения расклада как случайного события, а затем оценить различные возможные решения и оптимизировать математическое ожидание выигрыша. Большинство практических задач расчёта вероятностей определённого расклада, нужного прикупа и т. д. можно свести к следующей общей схеме.[104]
В генеральной совокупности, состоящей из различными способами, чёрные карты —
способами.
Здесь — так называемые биномиальные коэффициенты:[105]
, где
— число возможных перестановок из
Отметим, что — выборка, содержащая все
Любой способ выбора . (1)
Если выборка должна содержать только красные карты (. (2)
Определённая таким образом система вероятностей
Например, вы купили прикуп, сделали снос, на руках шесть старших карт в пике и AKQx в трефе (трефа не сносилась). Какова вероятность того, что у одного из партнёров на руках четвёртый валет треф?
. (3)
Таким образом, четвёртая трефа встретится в 87 случаях из 1000 (вероятность расклада удваивается, поскольку вам всё равно, у кого из партнёров будет четвёртый валет треф).
Или, например, вы хотите объявить мизер. Для того чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Какова вероятность, что вы купите нужную карту и сыграете «чистый» мизер?
. (4)
Второй член в (4) определяет вероятность покупки двух из семи заданных карт.
Система вероятностей
Вероятность того, что выборка объёма
. (5)
где
Точно так же можно определять вероятности для выборки, содержащей четыре класса элементов. Рассмотрим пример, в котором элементами каждого класса являются карты одной из четырёх мастей.
У вас на руках AKxx, Axx, Axx, а в сносе две фоски четвёртой масти. Первая масть — козырная. Какова вероятность того, что вы проиграете контракт на шесть взяток, если партнёры вистуют в светлую?
На руках у вистующих четыре козыря, по пять карт в других ваших мастях и шесть карт в четвёртой масти. Для подсада контракта у кого-то из партнёров должен найтись один из губительных для вас раскладов:
3:3:3:1, 3:4:3:0, 3:3:4:0, 4:3:3:0, 4:3:2:1, 4:2:3:1, 4:4:2:0, 4:2:4:0, 4:2:2:2.
С раскладом 4:2:2:2 вистующий посадит контракт, если начнёт разыгрывать козырь сам. Строго говоря, у него может не найтись нужных приёмов в побочных мастях, поэтому шансы на выигрыш у вас есть. Но они очень незначительны, и мы их не учитываем.
. (6)
В одном случае из девяти рассмотренных карта будет зеркальной (4:3:3:0), и вы возьмёте только четыре взятки. Вероятность этого события равна 0,00054?2. Вероятность каждого расклада нужно удвоить, так как вам всё равно, у кого из партнёров встретился данный расклад.
Выше уже отмечалось, что при вероятностном подходе оптимизируется не выигрыш отдельного контракта, а математическое ожидание выигрыша при регулярной игре. Приведённые зависимости позволяют определить при игре в преферанс вероятности повторения раскладов как случайных событий и рассчитать математическое ожидание выигрыша (проигрыша) в конкретных ситуациях.
Рассмотрим методику определения математического ожидания выигрыша и поиска оптимальных решений на некоторых примерах, приведённых выше.
Вы играете «сочинку» вчетвером, объявили мизер. Чтобы он был чистым, нужно купить в прикупе